SN74LVC2G74-Q1

ACTIVE

Product details

Number of channels 1 Technology family LVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 5.5 Input type Standard CMOS Output type Push-Pull Clock frequency (max) (MHz) 200 IOL (max) (mA) 32 IOH (max) (mA) -32 Supply current (max) (µA) 10 Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Operating temperature range (°C) -40 to 125 Rating Automotive
Number of channels 1 Technology family LVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 5.5 Input type Standard CMOS Output type Push-Pull Clock frequency (max) (MHz) 200 IOL (max) (mA) 32 IOH (max) (mA) -32 Supply current (max) (µA) 10 Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Operating temperature range (°C) -40 to 125 Rating Automotive
VSSOP (DCU) 8 6.2 mm² 2 x 3.1
  • Qualified for Automotive Applications
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 6.9 ns at 3.3 V
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

  • Qualified for Automotive Applications
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 6.9 ns at 3.3 V
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V VCC operation.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V VCC operation.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 31
Type Title Date
* Data sheet Single Positive-Edge-Triggered D-Type Flip-Flop With Clear and Preset datasheet (Rev. C) 09 Apr 2008
Product overview Generate a Timed Pulse Using a Binary Counter PDF | HTML 14 Jun 2023
Product overview Generate an Enable Signal that can be Toggled PDF | HTML 14 Jun 2023
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
More literature Automotive Logic Devices Brochure 27 Aug 2014
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

5-8-LOGIC-EVM — Generic logic evaluation module for 5-pin to 8-pin DCK, DCT, DCU, DRL and DBV packages

Flexible EVM designed to support any device that has a DCK, DCT, DCU, DRL, or DBV package in a 5 to 8 pin count.
User guide: PDF
Not available on TI.com
Reference designs

PMP31273 — Automotive dual buck converter reference design for C2000™ MCU with supervisor and watchdog

This reference design is a flexible and compact power supply providing 5-V and 3.3-V output rails to supply the C2000™ MCU. The design includes two LMR34206-Q1 ultra-small synchronous step-down converter devices and one TPS3850-Q1 precision voltage supervisor with programmable window watchdog (...)
Test report: PDF
Reference designs

TIDA-01418 — Automotive high voltage, high power motor driver reference design for HVAC compressor

This brushless DC (BLDC) motor reference design controls an automotive HVAC (heating, ventilation, and air conditioning) compressor by using the UCC27712-Q1 high-side and low-side gate driver followed by discrete insulated-gate bipolar transistor (IGBT) half bridges. This reference design uses (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00141 — Automotive Brushed Motor Driver for Flip-up Displays

This TIDA-00141 reference design provides a quick setup guide for a push-to-open/push-to-close motor drive system that enables the actuation of a flip up display for infotainment systems. This solution also demonstrates two methods of feedback: one using limit switches and the other taking (...)
Design guide: PDF
Schematic: PDF
Package Pins Download
VSSOP (DCU) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos