A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TLV9104 ACTIVE Quad, 16-V 1.1-MHz low-power (0.12 mA) operational amplifier Pin-to-pin upgrade with improved performance: lower Vos(1.5mV), higher slew rate(4.5V/us) and output current(80mA)

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Rail-to-rail In to V- GBW (typ) (MHz) 0.525 Slew rate (typ) (V/µs) 0.46 Vos (offset voltage at 25°C) (max) (mV) 2 Iq per channel (typ) (mA) 0.105 Vn at 1 kHz (typ) (nV√Hz) 32 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 1.7 Input bias current (max) (pA) 60 CMRR (typ) (dB) 91 Iout (typ) (A) 0.008 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -1 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -1.1
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Rail-to-rail In to V- GBW (typ) (MHz) 0.525 Slew rate (typ) (V/µs) 0.46 Vos (offset voltage at 25°C) (max) (mV) 2 Iq per channel (typ) (mA) 0.105 Vn at 1 kHz (typ) (nV√Hz) 32 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 1.7 Input bias current (max) (pA) 60 CMRR (typ) (dB) 91 Iout (typ) (A) 0.008 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -1 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -1.1
PDIP (N) 14 181.42 mm² 19.3 x 9.4 SOIC (D) 14 51.9 mm² 8.65 x 6
  • Trimmed Offset Voltage:
    TLC27M9...900 uV Max at TA = 25°C,
    VDD = 5 V
  • Input Offset Voltage Drift...Typically
    0.1 uV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:
    0°C to 70°C...3 V to 16 V
    -40°C to 85°C...4 V to 16 V
    -55°C to 125°C...4 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix Types)
  • Low Noise...Typically 32 nV/ Hz\
    at f = 1 kHz
  • Low Power...Typically 2.1 mW at TA=25°C, VDD = 5 V
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance...1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up Immunity
  • Trimmed Offset Voltage:
    TLC27M9...900 uV Max at TA = 25°C,
    VDD = 5 V
  • Input Offset Voltage Drift...Typically
    0.1 uV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:
    0°C to 70°C...3 V to 16 V
    -40°C to 85°C...4 V to 16 V
    -55°C to 125°C...4 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix Types)
  • Low Noise...Typically 32 nV/ Hz\
    at f = 1 kHz
  • Low Power...Typically 2.1 mW at TA=25°C, VDD = 5 V
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance...1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up Immunity

The TLC27M4 and TLC27M9 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds comparable to that of general-purpose bipolar devices.These devices use Texas Instruments silicon-gate LinCMOSTM

LinCMOS is a trademark of Texas Instruments Incorporated. technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, make these cost-effective devices ideal for applications that have previously been reserved for general-purpose bipolar products, but with only a fraction of the power consumption.

Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27M4 (10 mV) to the high-precision TLC27M9 (900 uV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available on LinCMOSTM operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27M4 and TLC27M9. The devices also exhibit low voltage single-supply operation, and low power consumption, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27M4 and TLC27M9 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015; however, care should be exercised in handling these devices, as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

AVAILABLE OPTIONS
TA

VIOmax
AT 25°C
PACKAGE
CHIP
FORM
(Y)
SMALL OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(J)
PLASTIC DIP
(N)
TSSOP
(PW)
0°C to 70°C
900 uV
TLC27M9CD
--
--
TLC27M9CN
--
--
2 mV
TLC27M4BCD
--
--
TLC27M4BCN
--
--
5 mV
TLC27M4ACD
--
--
TLC27M4ACN
--
--
10 mV
TLC27M4CD
--
--
TLC27M4CN
TLC27M4CPW
TLC27M4Y
-40°C to 85°C
900 uV
TLC27M9ID
--
--
TLC27M9IN
--
--
2 mV
TLC27M4BID
--
--
TLC27M4BIN
--
--
5 mV
TLC27M4AID
--
--
TLC27M4AIN
--
--
10 mV
TLC27M4ID
--
--
TLC27M4IN
TLC27M41PW
--
-55°C to 125°C
900 uV
TLC27M9MD
TLC27M9MFK
TLC27M9MJ
TLC27M9MN
--
--
10 mV
TLC27M4MD
TLC27M4MFK
TLC27M4MJ
TLC27M4MN
--
--

The D and PW package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).

The TLC27M4 and TLC27M9 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds comparable to that of general-purpose bipolar devices.These devices use Texas Instruments silicon-gate LinCMOSTM

LinCMOS is a trademark of Texas Instruments Incorporated. technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, make these cost-effective devices ideal for applications that have previously been reserved for general-purpose bipolar products, but with only a fraction of the power consumption.

Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27M4 (10 mV) to the high-precision TLC27M9 (900 uV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available on LinCMOSTM operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27M4 and TLC27M9. The devices also exhibit low voltage single-supply operation, and low power consumption, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27M4 and TLC27M9 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015; however, care should be exercised in handling these devices, as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

AVAILABLE OPTIONS
TA

VIOmax
AT 25°C
PACKAGE
CHIP
FORM
(Y)
SMALL OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(J)
PLASTIC DIP
(N)
TSSOP
(PW)
0°C to 70°C
900 uV
TLC27M9CD
--
--
TLC27M9CN
--
--
2 mV
TLC27M4BCD
--
--
TLC27M4BCN
--
--
5 mV
TLC27M4ACD
--
--
TLC27M4ACN
--
--
10 mV
TLC27M4CD
--
--
TLC27M4CN
TLC27M4CPW
TLC27M4Y
-40°C to 85°C
900 uV
TLC27M9ID
--
--
TLC27M9IN
--
--
2 mV
TLC27M4BID
--
--
TLC27M4BIN
--
--
5 mV
TLC27M4AID
--
--
TLC27M4AIN
--
--
10 mV
TLC27M4ID
--
--
TLC27M4IN
TLC27M41PW
--
-55°C to 125°C
900 uV
TLC27M9MD
TLC27M9MFK
TLC27M9MJ
TLC27M9MN
--
--
10 mV
TLC27M4MD
TLC27M4MFK
TLC27M4MJ
TLC27M4MN
--
--

The D and PW package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet LinCMOS Precision Quad Op Amps datasheet (Rev. D) 11 Oct 2012
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

TLC27M4, TLC27M4A, TLC27M4B PSpice Model

SLOJ101.ZIP (3 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
PDIP (N) 14 View options
SOIC (D) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos