Top

Product details

Parameters

Function USB2 USB speed (Mbps) 12 Supply voltage (V) 3.3 Rating Catalog Operating temperature range (C) -40 to 85 open-in-new Find other USB hubs & controllers

Package | Pins | Size

LQFP (VF) 32 49 mm² 7 x 7 open-in-new Find other USB hubs & controllers

Features

  • Fully Compliant With the USB Specification as a Full-Speed Hub: TID #30220231
  • 32-Pin LQFP (1) Package With a 0.8-mm Terminal Pitch or QFN Package With a 0.5-mm Pin Pitch
  • 3.3-V Low-Power ASIC Logic
  • Integrated USB Transceivers
  • State Machine Implementation Requires No Firmware Programming
  • One Upstream Port and Four Downstream Ports
  • All Downstream Ports Support Full-Speed and Low-Speed Operations
  • Two Power Source Modes
    • Self-Powered Mode
    • Bus-Powered Mode
  • Power Switching and Overcurrent Reporting Is Provided Ganged or Per Port
  • Supports Suspend and Resume Operations
  • Supports Programmable Vendor ID and Product ID With External Serial EEPROM
  • 3-State EEPROM Interface Allows EEPROM Sharing
  • Push-Pull Outputs for PWRON Eliminate the Need for External Pullup Resistors
  • Noise Filtering on OVRCUR Provides Immunity to Voltage Spikes
  • Package Pinout Allows 2-Layer PCB
  • Low EMI Emission Achieved by a 6-MHz Crystal Input
  • Migrated From Proven TUSB2040 Hub
  • Lower Cost Than the TUSB2040 Hub
  • Enhanced System ESD Performance
  • No Special Driver Requirements; Works Seamlessly With Any Operating System With USB Stack Support
  • Supports 6-MHz Operation Through a Crystal Input or a 48-MHz Input Clock

(1)JEDEC descriptor S-PQFP-G for low-profile quad flatpack (LQFP).

All trademarks are the property of their respective owners.

open-in-new Find other USB hubs & controllers

Description

The TUSB2046x is a 3.3-V CMOS hub device that provides one upstream port and four downstream ports in compliance with the Universal Serial Bus (USB) specification as a full-speed hub. Because this device is implemented with a digital state machine instead of a microcontroller, no firmware
programming is required. Fully compliant USB transceivers are integrated into the ASIC for all upstream and downstream ports. The downstream ports support full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. The configuration of the BUSPWR pin selects either the bus-powered or the self-powered mode.

Configuring the GANGED input determines the power switching and overcurrent detection modes for the downstream ports. If GANGED is high, all PWRON outputs switch together and if any OVRCUR is activated, all ports transition to the power-off state. If GANGED is low, the PWRON outputs and OVRCUR inputs operate on a per-port basis.

The TUSB2046x provides the flexibility of using a 6-MHz or a 48-MHz clock. The logic level of the TSTMODE terminal controls the selection of the clock source. When TSTMODE is low, the output of the internal APLL circuitry is selected to drive the internal core of the device. When TSTMODE is high, the TSTPLL/48MCLK input is selected as the input clock source and the APLL circuitry is powered down and bypassed. The internal oscillator cell is also powered down while TSTMODE is high. Low EMI emission is achieved because the TUSB2046x can usee a 6-MHz crystal input. Connect the crystal as shown in Figure 6. An internal PLL then generates the 48-MHz clock used to sample data from the upstream port and to synchronize the 12 MHz used for the USB clock. If low-power suspend and resume are desired, a passive crystal or resonator must be used. However, a 6-MHz oscillator may be used by connecting the output to the XTAL1 pin and leaving the XTAL2 pin open. The oscillator TTL output must not exceed 3.6 V.

For 48-MHz operation, the clock cannot be generated with a crystal using the XTAL2 output because the internal oscillator cell supports only the fundamental frequency. Other useful features of the TUSB2046x include a package with a 0.8-mm pin pitch for easy PCB routing and assembly, push-pull outputs for the PWRON pins eliminate the need for pullup resistors required by traditional open-collector I/Os, and OVRCUR pins have noise filtering for increased immunity to voltage spikes.

open-in-new Find other USB hubs & controllers
Download

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 1
Type Title Date
* Datasheet TUSB2046x 4-Port Hub for the Universal Serial Bus With Optional Serial EEPROM Interface datasheet (Rev. L) Jun. 28, 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARDS Download
document-generic User guide
249
Description

Step 1 : Buy the EVM
Step 2 : Refer to the  quick start guide  
Step 3 : Download the Water Metering Software
Step 4 : Refer the TI Design TIDM-1019

The EVM430-FR6047 evaluation kit is a development platform to evaluate the performance of the MSP430FR6047 MCUs for ultrasonic sensing applications (e.g (...)

Features
  • USB powered and provision for external power
  • Connector available to interface with different transducer types
  • BoosterPack™ plug-in module headers available to interface with external boards (I2C, SPI, UART, GPIO) and RF communication modules
  • On-board segmented LCD
  • On-board eZ-FET emulation circuit to (...)
EVALUATION BOARDS Download
document-generic User guide
299
Description

Step 1 : Buy the EVM
Step 2 : Refer the user guide
Step 3 : Download the software
Step 4 : Refer the App Note

Developing Flow meter design for Water, Gas and Heat meters with the Ultra-low-power MSP430FRx FRAM microcontroller Family is now enabled by the EVM430-FR6989 reference board. The (...)

EVALUATION BOARDS Download
TPS207x Evaluation Module
TPS2071EVM-159
document-generic User guide
99
Description
  • Bus-powered input voltage range (BP), 0 to 100 mA/port, 4.75 V min to 5.25 V max
  • Self-power input voltage range (SP), 0 to 500 mA/port, 4.85 V min to 5.15 V max
  • Downstream output voltage range in bus-powered mode, 0 to 100 mA/port, 4.4 V min to 5.25 V max
  • Downstream output voltage range in self-powered (...)
Features
  • Complete 4-Port Hub Reference Design featuring TPS2071 USB Power Controller and TUSB2046B USB Device Controller.
  • Smaller, simpler, and more cost-effective design due to advanced integration of TPS2071
DEVELOPMENT KITS Download
document-generic User guide
12.99
Description

To get started developing:
Step 1: Buy Launchpad
Step 2: Download User Guide
Step 3: Get to know MSP430 through our MSP430 Workshop Series

Develop low power, PC-connected applications with integrated Full-speed USB 2.0 (HID/MSC/CDC).  The MSP-EXP430F5529LP LaunchPad is an inexpensive, simple (...)

Features
  • USB 2.0-enabled MSP430F5529 16-bit MCU
  • Up to 25 MHz
  • 128KB Flash and 8KB RAM
  • 12 Bit SAR ADC
  • Various USB device class examples and embedded software libraries available (CDC, HID, MSC)
  • eZ-FET lite: Open source onboard debugger with application UART
  • One USB connection for emulator and target via the use of (...)

Design tools & simulation

SIMULATION TOOLS Download
PSpice® for TI design and simulation tool
PSPICE-FOR-TI — PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Features
  • Leverages Cadence PSpice Technology
  • Preinstalled library with a suite of digital models to enable worst-case timing analysis
  • Dynamic updates ensure you have access to most current device models
  • Optimized for simulation speed without loss of accuracy
  • Supports simultaneous analysis of multiple products
  • (...)
SIMULATION TOOLS Download
SPICE-based analog simulation program
TINA-TI TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
document-generic User guide

CAD/CAE symbols

Package Pins Download
LQFP (VF) 32 View options

Ordering & quality

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos