Product details

Number of channels 9 Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 48 IOH (max) (mA) -24 Supply current (max) (µA) 38000 Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
Number of channels 9 Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 48 IOH (max) (mA) -24 Supply current (max) (µA) 38000 Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
LCCC (FK) 28 130.6449 mm² 11.43 x 11.43
  • State-of-the-Art EPIC-II BTM BiCMOS Design Significantly Reduces Power Dissipation
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • Typical VOLP (Output Ground Bounce) < 1 V at VCC = 5 V, TA = 25°C
  • High-Impedance State During Power Up and Power Down
  • High-Drive Outputs (-32-mA IOH, 64-mA IOL)
  • Buffered Control Inputs to Reduce dc Loading Effects
  • Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Standard Plastic (NT) and Ceramic (JT) DIPs

EPIC-IIB is a trademark of Texas Instruments Incorporated.

  • State-of-the-Art EPIC-II BTM BiCMOS Design Significantly Reduces Power Dissipation
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • Typical VOLP (Output Ground Bounce) < 1 V at VCC = 5 V, TA = 25°C
  • High-Impedance State During Power Up and Power Down
  • High-Drive Outputs (-32-mA IOH, 64-mA IOL)
  • Buffered Control Inputs to Reduce dc Loading Effects
  • Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Standard Plastic (NT) and Ceramic (JT) DIPs

EPIC-IIB is a trademark of Texas Instruments Incorporated.

These 9-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

With the clock-enable (CLKEN\) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN\ high disables the clock buffer, thus latching the outputs. Taking the clear (CLR\) input low causes the nine Q outputs to go low, independently of the clock.

A buffered output-enable (OE\) input can be used to place the nine outputs in either a normal logic state (high or low logic level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

When VCC is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT823 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT823 is characterized for operation from -40°C to 85°C.

These 9-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

With the clock-enable (CLKEN\) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN\ high disables the clock buffer, thus latching the outputs. Taking the clear (CLR\) input low causes the nine Q outputs to go low, independently of the clock.

A buffered output-enable (OE\) input can be used to place the nine outputs in either a normal logic state (high or low logic level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

When VCC is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT823 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT823 is characterized for operation from -40°C to 85°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 21
Type Title Date
* Data sheet 9-Bit Bus-Interface Flip-Flops With 3-State Outputs datasheet (Rev. E) 01 May 1997
* SMD SN54ABT823 SMD 5962-94508 21 Jun 2016
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 16 Feb 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 01 Mar 1997
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins Download
LCCC (FK) 28 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos