
Audio Decoding on C54X

Chuck Lueck

Alec Robinson

Jon Rowlands

Presentation Overview

• Platform Description
- C54X DSP

• Algorithm Overview
- MPEG-1 Layer 3 (MP3)
- MPEG-2 Advanced Audio Coding (AAC)

• Implementation Details
- What it takes to port to the C54X

Platform Description

• Development for C54X 16-bit fixed-point DSP

• Initial target was C5410 and goal is a C5409

• C5410 has 64 k RAM and no ROM

• C5409 has 32 k of RAM and 16 k ROM

• C5409 is lower cost and power

• Used Spectrum Digital C54X EVM for non-real time
development, profiling, and compliance testing.

• Real-time development on TI Internet Audio C5410 EVM.

Algorithms Overview

• MPEG-1 Layer 3 (MP3)

• MPEG-2 Advanced Audio Coding (AAC)

• Supports stereo, 8-128 kbits/s, 8-48 kHz

• MP3 has recently gained popularity for
downloading audio content via the internet.

• AAC has been adopted as the high-quality
audio codec in MPEG-4, and for use in the
future Japanese HDTV standard.

Implementation Details

• Started from a floating-point C reference running on the PC

• Compiled this code for the C54X and got in running on a
Spectrum Digital EVM.

• Worked out dynamic range issues on PC

• Floating-point to fixed-point C implemented initially on the
PC

• Used a C library of fixed-point arithmetic routines

• Got the fixed-point C code running on the C54X EVM.

• Profiled fixed-point C and optimized slow sections in
Assembly.

Implementation Details

• Real-time development was done on TI
Portable Audio EVM

• Portable Audio EVM provides support for:
- 5 Band Graphic EQ
- Sample Rate Converter
- Volume
- Decryption
- Compact Flash

MP3/AAC Block Diagram

Parsing and
Huffman
Decoding

Inverse
Quantization Joint

Stereo
TNS

(AAC)
Filterbank

Bitstream Audio

Parser

• Both MP3 and ACC require significant Huffman decoding.

• Computationally intensive tasks are assembly coded

• Audible fast-forward/reverse implemented in the parser

• Non-trivial because FF/RW requires jumping forward or
backward into a bitstream with variable length codes.

• Our Huffman decoder in AAC uses a fast prefix counter
implementation.

• MP3 code books are structured differently and require a
different algorithm

Inverse Quantizer

• Both AAC and MP3 use a non-linear exponential function

• Table lookups handle the most common values

• Others are computed with a more accurate assembly coded
algorithm

• This gives us a trade off between MIPS and memory: a
bigger table requires fewer MIPS but more memory

Inverse Filter bank

• MP3 and AAC use different filter banks

• MP3 uses a hybrid; IMDCT followed by Polyphase subband.

• AAC uses one large IMDCT

• Both have “window switching” capabilities to control
quantization noise spread in the time domain

• MP3 has 576 spectral lines and AAC 1024

• Our IMDCT implementation minimizes “state buffer”
requirements.

• Much of the FB is double precision (32-bit) to keep PCM
output precision high.

Temporal Noise Shaping

• Unique to AAC

• Requires an FIR filter in the encoder and a
fixed-point all-pole filter in the decoder

• Improves the quality of coding signals with
highly varying time-domain envelopes, such
as speech, with a transform-based coder

Conclusion

• We currently have both MP3 and AAC
running on the C5410

• Both algorithms will be on the C5409 soon.

• Questions?

