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Abstract
This paper considers the design of an observer-based adaptive controller for variable speed three-
phase AC induction motors.  The proposed controller allows for the simultaneous and
independent control of the speed (torque) and the flux of the motor without requiring the
measurement of the flux, and without the knowledge of the rotor resistance and the motor load.
The control adaptively estimates the flux variables and the unknown parameters, using only the
measured signals.  The control strategy is designed for the equivalent two-phase field-oriented
(d-q) model of the motor.  Therefore, it does not have stiff nonlinearities and, hence, it is suitable
for the discretization and digital implementation with DSPs.
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Introduction
AC induction motors are very popular in the industry since they are rugged, inexpensive, and are
maintenance free.  Unfortunately, unlike DC motors, they have nonlinear dynamics and, for
variable speed servo applications, they require advanced control schemes [1-4].  Fortunately,
however, using power electronics and fast digital signal processors (DSP), the implementation of
such advanced controllers is now becoming practical [5-6].

In the past recent years, many techniques have been developed for the control of variable speed
induction motors [1-6].  Although DSPs have provided the computational power for the
implementation of such advanced control schemes, in real applications, these techniques are
either very difficult to implement or do not perform as desired.  The problems are due to the fact
that induction motors have nonlinear dynamics; their rotor flux variables cannot be measured for
control application; and that rotor resistance varies up to 200% due to heating of the motor.
These have been the topic of research in the recent past years and some solutions have been
proposed [7-11].  However, no simple solution has yet been provided.

In this paper the design of a field-oriented adaptive controller is considered for variable speed
three-phase AC induction motors with unknown load and rotor resistance. The control is
designed for an equivalent two-phase field-oriented (d-q) model of the motor. It allows for the
simultaneous and independent control of the speed (torque) and the flux of the motor, without
requiring the measurement of the flux. The control does not require the knowledge of the rotor
resistance or the load.  It adaptively estimates these parameters, using only measurable signals
and guarantees the stability of the closed-loop system.  The proposed controller also eliminates
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the stiff nonlinearities in the model, which are due to the simultaneous existence of slow and fast
modes, and hence is suitable for the discretization and digital implementation with DSPs.

Dynamic model of induction motors
The dynamic model of three-phase induction motors, Figure 1, is very nonlinear with strong
cross couplings.  It also contains both slow and fast modes, which makes digital implementation
of most control techniques difficult.

Figure 1

An equivalent two-phase dynamic model of a three-phase induction motor [1-4], as shown in
Figure 2, is given by

Figure 2
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where ω, φα,β, iα,β, vα,β are rotor speed, induced fluxes, stator currents and stator voltages in the
stator’s fixed α-β coordinate system (frame).  TL is the load torque, which is usually a function

Rotor

Stator

Three-Phase Induction Motor

360

0

90

Rotor Flux Rotation

Phase αα
Phase ββ

Rotor

Stator

Phase ββ

Phase αα

Two-Phase Induction Motor



3

of rotor’s speed.  Moreover, J
1

0a = , 
r

m
LJ
Ln

2
3

1a = , m1 LL σ−
σ

µ = , sLL σ=σ  (leakage inductance),

sr

2
m

LL
L1−=σ  (leakage factor), and that Rr, Rs, Lr and Ls are the resistances and inductances of the

rotor and the stator, and that Lm is the mutual inductance of the motor.  Some of these
parameters, such as rotor’s effective resistance Rr, change drastically with temperature [7-11].
Also, the flux variables φα and φβ, generally, cannot be measured directly.  Due to these facts, the
controller design for the induction motors is quite challenging.  Nevertheless, due to their simple
structure, low maintenance, and high torque generation, these motors are very popular in the
industry and the development of high performance controllers for these machines is of great
importance.

Consider the generalized d-q field-oriented coordinate transformation, as shown in Figure 3,
given by

Figure 3:  d-q Coordinate Transformation
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Applying the above coordinate transformation, the motor’s dynamics may be written as
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where ωs is the angular speed of α-β frame with respect to d-q frame.  Here, the variable ωs,
known as the slip frequency, is considered as an input variable that is to be selected.
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Controller Design
There are two common techniques for implementing a controller for an induction motor, current
source inverter (CSI)-fed control and voltage source inverter (VSI)-fed control.  For CSI-fed
control, the stator currents, together with ωs, are considered as the control variables and their
values are determined.  High-gain inner-loop current controllers are then used to implement these
desired currents.  For VSI-fed control, the stator voltages, together with ωs, are considered as the
control variables.  These voltages are then determined and implemented directly.  In both cases
the applied currents and voltages must be kept bounded.  In this paper, the design of a CSI-fed
control strategy for induction motors is considered.  Generally, for the CSI control design, only
the first and the last two equations in (4) are required for control derivations.

Figure 4:  Induction Motor Control System
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Now consider the control strategy, given as
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the currents, and that c1, c11, γ0 and γ01 are positive constants.  Note that 15.0 ≤γ< .  Also note
that the proposed control strategy is just a nonlinear static feedback control in the d-q frame.  The
control does not require the measurement of the rotor flux.  Moreover, it is well defined
everywhere, provided that the reference command for the rotor’s flux magnitude, φR, is kept non-
zero and positive at all times, which is always possible.  With the above controller, the dynamics
of the closed-loop error system can be written as
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Using a candidate Lyapunov function, such as [ ]2
q
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2
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closed-loop signals are globally bounded and that the errors converge to zero exponentially.
Therefore, when all the motor parameters are constant and known, the proposed static feedback
control (6) can achieve the motor speed servo control objectives.  For implementation, of course,
the equivalent control currents iα and iβ in the α-β frame must be applied, using equations (2)
and (3).  Obviously, since equation (2) must be used for the control implementation, the resulting
controller in the α-β frame would be of first order.

Case 2 – Unknown Parameters
Now let us assume that both load torque TL and rotor’s electrical resistance Rr change during the
operation.  In that case, the control strategy (6) must be modified to account for the variations in
these parameters.  Here we will consider an adaptive control strategy.

Assume that both TL and Rr > 0 are unknown.  Denote the inverse of rotor resistance as 
rR

1=ρ ,

which is also positive and unknown.  Then the tracking errors (5) are written as
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where the parameter errors are defined as LLL T̂TT
~ −= , rrr R̂RR

~ −=  and ρ−ρ=ρ ˆ~ , and that

LT̂ , rR̂  and ρ̂  are the estimates of TL, Rr and 
rR

1=ρ .  The unknown parameter TL appears only

in the dynamic equation of eω.  But since eω is known, then TL can be estimated.  The unknown
parameters Rr and 

rR
1=ρ , on the other hand, appear in the flux equations φq and eφ.  Obviously,

if φd and φq were known, Rr and ρ also could be estimated.  However, since the flux variables are
not known, they must first be estimated or calculated, using only the measured variable.
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Let us first assume that the rotor flux φd and φq are known.  Now consider the adaptive control
strategy, given by
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where γ, γ , c1 and c11 are defined as before, and that c2, γ1, γ2 and γ3 are positive constants.  Note

again that the proposed controller is defined everywhere, provided that φR > 0 at all times, which
is always possible.  With the above adaptive control, the dynamics of the closed-loop error
system is written as
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it can be shown that, with the control strategy (9), all the closed-loop signals are globally
bounded and that the tracking errors converge to zero asymptotically.  The parameter errors, on
the other hand, will always stay bounded, but they may or may not converge to zero.  However,
as in any direct adaptive control strategy, the convergence of parameter estimates is not of
primary importance.  Therefore, the proposed dynamic control (9) can achieve the motor speed
servo control objectives.

The above algorithm, however, requires the knowledge of eφ and φq.  In order to find these
variables, note from equation (4) that, one may find the dynamic model of the stator flux
variables, which do not depend on the unknown rotor resistance [9-11].  Then, using the
algebraic relationships between the stator and the rotor flux variables, which also are
independent of the rotor resistance, one would be able to calculate the rotor flux variables [11].
The corresponding observer for the rotor flux error variables eφ and φq are then given as
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where ddd iLµ+φ=ψ  and qqq iLµ+φ=ψ  are the stator flux variables.  As it can be seen, the

above equations are independent of the unknown parameters and all the variables in the right
side of the equations are measurable.  Hence, the above flux observer can be used for the on line
calculation of the rotor flux variables.  The calculated rotor flux can then be used for the
estimation of Rr and ρ.

However, these equations lack leakage terms and hence initial errors, if they exist, may not die
out [11].  One possible remedy is to include, as the correcting term, a bounded function of the
tracking errors in the dynamics of the above rotor flux observer, as

ddsdL

L
qsd z)iRv(ˆˆ −−+ψω=ψ

σ

µ&  (12)

qqsqL

L
dsq z)iRv(ˆˆ −−+ψω−=ψ

σ

µ&
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where the correcting terms zd and zq are bounded functions of the tracking errors eω, φê  and qφ̂ .

A variety of functions can be selected for the above correcting terms that guarantee the
convergence of the observer dynamics.  Such choices and their corresponding proof of
convergence will be presented in future works.

Simulation/ Emulation Example
In this section the effectiveness of the proposed algorithm for speed control of an AC induction
motor is verified by computer simulation/ emulation, according to Figure 5.

Figure 5:  Induction Motor Control Set-up
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The specifications for the AC induction motor are:  motor torque=15 KW (rated), load torque=70
Nm (rated), rotor flux linkage=1.3 Wb (rated), angular speed=220 rad/s (rated), n=1, J=0.0586
Kgm2, Rs=0.18 Ω, Rr=0.15 Ω, Ls=0.0699 H, Lr=0.0699 H, Lm=0.068 H.  A DSP application
development board, with TI’s TMS320C31 floating-point DSP chip, is considered for
implementation.  For the simulation, the DSP’s A/D sampling time is chosen as Ts=1 msec, and
the actual load torque is taken to be TL=70 Nm.  Also, the PWM inverter is assumed to perform
in an ideal manner.  Moreover, the reference commands for the motor speed and rotor flux
magnitude are given by

cRR 22 ω=ω+ω&  (13)

cRR 22 φ=φ+φ&

where ωc is a square-wave with amplitude of ±10 and frequency of f=0.2 Hertz, for 0≤t≤10
seconds, while φc=1 over the same time interval.  The corresponding initial conditions are
ωR(0)=0 and φR(0)=1.

The proposed field-oriented observer-based adaptive controller was applied to the computer
simulated motor, for the time interval of t∈[0,10] seconds.  Figure 6 shows the desired and the
actual values for the speed and the flux magnitude, respectively.  Figure 7 shows the control
currents, slip frequency, and the applied voltages, respectively.  Figure 8 shows the estimates of
the load torque, rotor resistance and the inverse of the rotor resistance.

Figure 6:  Motor’s speed and flux variables
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Figure 7:  Motor’s currents, slip frequency, and applied voltages

Figure 8:  Motor’s parameters estimates
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objective quite satisfactorily, without rotor flux measurements and without the knowledge of the
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0 2 4 6 8 10

00

50

100100

Control Variables

id
* 

iq
*

id
* 

iq
*

0 2 4 6 8 10

-20

0

20
w

s

0 2 4 6 8 10

-20
0

20
40

vd
, v

q

Time (Sec)

0 2 4 6 8 10
00

50

100100
Parameters Estimates

T
L,

 T
L-

ha
t

T
L,

 T
L-

ha
t

0 2 4 6 8 10
0

0.1

0.2

R
r,

 R
r-

ha
t

0 2 4 6 8 10

-5

0

5

1/
R

r,
 (

1/
R

r)
-h

at

Time (Sec)



10

Conclusions
In this paper, an adaptive nonlinear control technique for speed servo control of AC induction
motors is presented.  The proposed controller is designed for the field-oriented (d-q) model of the
motor.  The d-q model eliminates the stiff nonlinearities (simultaneous slow and fast modes)
inherent in the induction motor’s dynamics and, hence, it is more suitable for discretization and
digital control implementation.  The controller results in the decoupling and I/O linearization of
the motor’s dynamics, which allows for better transient response.  The control includes a flux
estimator, which does not require the knowledge of the rotor resistance.  The proposed controller
is adaptive in the sense that it includes estimators for the unknown torque load, rotor resistance
and the inverse of the rotor resistance (to avoid division by zero).  The adaptive property of the
controller makes it more practical, since in real applications the load is not exactly known in
advance and that the rotor resistance may vary quite a bit, due to heating.  In addition, the
controller is asymptotically stable and does not have singularities.
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