
A Digital Control Laboratory Built around Texas
Instruments’ C3x DSK Evaluation Board

Daniel J. Block

University of Illinois at Urbana-Champaign
1406 W. Green Street

Urbana, IL 61801

Abstract

This paper will give an overview of the digital
control laboratory developed at the University of Illinois
Urbana/Champaign. First the laboratory equipment used
in the experiments will be discussed. Specifically, the TI
DSP system that was developed around the C3x DSK will
be detailed. The DSP system uses the C3x DSK as a
motherboard and in-house built daughter cards are used to
give the system its I/O capability. Four daughter cards
were built: 1) 16K-256K external zero wait-state SRAM
board, 2) LCD display controller board with additional 16
lines of TTL digital input and 16 lines of TTL digital
output, 3) 4 channel ±10V DAC / 4 channel optical
encoder input board, 4) 4 channel ±10V ADC board. The
main design challenge (beside the normal noise and
ground loop problems) in building these daughter cards
was forcing all boards to have compatible wait-states
because of the DSK’s limitations in the use of the
TSM320C31’s RDY signal. The general design of these
boards will be discussed giving the reader a start in the
design of their own data acquisition boards.

This DSP system is primarily used by the Digital
Control of Dynamic Systems course offered by the
General Engineering department at the University of
Illinois. The digital control course covers classical and
modern discrete control theory. The lecture portion of the
class is theoretical, covering all the mathematics of the z-
transform and different discrete control design methods.
The laboratory portion of the course deals with design and
implementation of the discrete controllers discussed in
lecture. First simulations are performed as a first check of
the control design. Then the students are asked to
implement their control designs on the C3x DSK system
and control the actual plant. Section 3 overviews each of
the six laboratory experiments that the students perform.

The future plans for the digital control course are to
develop new experiments that will involve the students
more with the C3x DSK. Presently a single daughter card
is being developed that would give the students all the I/O
needed for specific control experiments. The goal is to

make the daughter card inexpensive enough so that each
student in the digital control class could be given a C3x
DSK board along with the single daughter card. Then both
in the laboratory or at home they could develop and
implement their source code for the different experiments.
This “ownership” of the experiment involves the student
more in the lab work and therefore teaches the student
more. Obviously the challenge is keeping the system
“cheap” but versatile enough to perform the different
experiments. The control experiments also have to be
relatively inexpensive but complicated enough to show the
topics studied in the class. The current ideas and
prototypes of these experiments will be presented.

1. Introduction

At the University of Illinois, it has always been very
important to have hands on laboratories accompanying the
Digital Control of Dynamic Systems course offered by the
General Engineering department. When the lab was first
created in the early 1980’s, students were asked to
program Apple IIe personal computers with internal data
acquisition boards to control simulated systems wired on
an analog computer. Over the years the lab obviously
moved to faster PCs and also started introducing actual
electro-mechanical systems to control. Five years ago the
laboratory experiments were moved to the new College of
Engineering Control Systems Laboratory [5]. One year
after the move the decision was made to change the
laboratory content from programming a PC with internal
data acquisition cards to programming an embedded
TMS320C31 DSP system with comparable data
acquisition hardware. The TMS320C31 [4] was chosen as
the processor because of its floating point capability and its
easy-to-use optimizing C compiler. Specifics of the DSP
i.e. machine instructions, assembler programming, and
fixed point mathematics could not be covered in depth,
though, due to time constraints in a single semester course.
The focus of the lab portion of the course remains digital
control design and its programming implementation in the
C language. However, with the addition of the C3x DSK
we now teach the use of an embedded system along with
embedded system debugging techniques.

We initially purchased TMS320C31 DSP
development systems from Integrated Motions Inc. These
systems worked very well and we had very few problems
with the equipment itself. The limitation and downfall of
these systems was that they communicated with the PC
through the serial port at a baud rate of 9600. Thus, real-
time data download or upload was not very feasible. Slow
communication proved to be an annoyance for students
learning DSP programming for the first time and it became
one of the largest complaints about the lab assignments.

To find a relatively inexpensive solution to this data
transfer problem we began to develop our own DSP
development system around the C3x DSK [3] from Texas
Instruments. The C3x DSK communicates over the
parallel port making its communication much faster then a
9600 baud serial port. The C3x DSK also gives access to
nearly all the TMS320C31’s pins, making it a low-cost
motherboard to build a DSP development system around.
To encourage student involvement in the development of
this DSP system, the College of Engineering Control
Systems Lab manager [5] offered a special projects course
in which groups of two students were given the task to
design and build the prototype for an I/O daughter card
needed in the system. The final versions of the daughter
cards were reproduced for use in the digital control class.
The new system includes the C3x DSK along with four
stackable daughter cards. A zero wait-state external
SRAM card was built to expand the C3x DSK’s memory
to 66x32K words. The three remaining cards add analog
and digital I/O and a LCD display. In total, the system has
4 channels of ADC input, 4 channels of DAC output, 4
channels of quadrature optical encoder input, 16 lines of
digital input, and 21 lines of digital output. Note that the
I/O listed above does not include the AIC (analog interface
circuit) chip on the C3x DSK, which is disabled in our
design. We introduced these systems into the lab portion
of the digital control course three semesters ago and have
been very pleased with their performance.

2. Daughter Cards for the C3x DSK

Details of the four in-house built daughter cards are
given in this section. Table 1 shows the memory map for
the external I/O space used by the four daughter cards.
Details of the C3x DSK and the individual peripheral chips
used on the boards are not given in this paper. Please refer
to the TMS320C3x user manuals [3,4] and the peripheral
chips’ data sheets [6,7,8,9,10] for detailed information.

External SRAM
0x80A000-0x8FFFFF
0x900000-0x93FFFF
0x940000-0xBFFFFF

Reserved by External SRAM
256K External SRAM
Reserved by External SRAM

LCD/Digital I/O Board
0xC00000
0xC00001
0xC00002
0xC00003
0xC00004-0xC0FFFF

LCD Data Read/Write
LCD Control Read/Write
Digital IN Read
Digital OUT Write
Reserved by LCD/Digital I/O Board

0xC10000-0xC1FFFF UNUSED
Encoder/DAC Board
0xC20000
0xC20001
0xC20002
0xC20003-0xC2FFFF

Encoder Read
DAC/Encoder Write
DAC/ENC Dir. And DAC Reset
Reserved by Encoder/DAC board

0xC30000-0xC3FFFF UNUSED
ADC Board
0xC40000
0xC40001
0xC40002-0xC4FFFF

ADC Write
ADC Read
Reserved by ADC Board

0xC50000-0xDEFFFF UNUSED

Table 1: Memory Map for all Four External
Daughter Cards Fabricated for the C3x DSK.

2.1 External SRAM Board.

The C3x DSK board itself only has the
TMS320C31’s 2Kx32 words of on chip RAM. This is
enough memory to do quite a number of control
experiments even when compiling C programs for the
DSP. Section 4 talks about future lab experiments that
plan to use only the internal memory of the C3x DSK. For
this more general purpose DSP development system, it was
important to have access to more memory for use in local
data collection and data storage. Also, the additional
memory is used for character manipulation functions for
the LCD screen which take up quite a bit of program
space.

As seen in Figure 1, the design of the external
memory board for the C3x DSK is quite simple. The
major design issue is finding fast enough memory and glue
logic to perform read and write cycles in less than 40 ns
(zero wait-state). Cypress’s CYM1831PM-15C (15ns,
64x32K) SRAM SIMM was chosen for the board. 15ns is
approximately the lowest value available for the zero wait-
state interface. As shown below, address lines 22 and 23
along with external I/O strobe (STRB) are used to generate

STRB

A22-23

A0-17

D0-31

C3x DSK

74F521
EN

A

O

B
Hard Wired for
Address Range
0x80A000-0xBFFFFF

D0-31

A0-17

CSs

R/W

Cypress CYM1831PM-15C
(16K-256K SRAM)

R/W

Figure 1: SRAM Daughter Card Schematic

the chip select pulse during the read and write cycles.
Note that a “Fast TTL” comparator chip (74F521) was
used to create this particular chip select (CS) signal. The
fast 5ns propagation delay of this device is very important
in making the external memory reliable.

One issue with this design is that it is very wasteful
when it comes to address space. The board takes up the
address space 0x80A000 to 0xBFFFFF. As seen later in
our other board designs we also were very wasteful of the
address space (See the memory map in Table 1). This is
not of concern since the TMS320C31 has much more
address space then the development system requires. As a
result, only 256K of the 4M of address space taken by the
SRAM board is useful. For the starting address of the
external memory, any number of addresses could be
chosen, but some choices are more obvious. We specified
to the C compiler to start the external memory at 0x900000
and access until 0x910000 (0x940000 if a 256K SIMM
had been installed). 0xA00000 or 0xB00000 could have
also been chosen and would have accessed the same
memory location as 0x900000.

A remaining design issue that we ran into with the
external memory board was electrical noise generation.
Interfacing external memory and analog I/O integrated
circuits with the same data-lines (and more importantly the
same ground plane) can induce unwanted electrical noise
in the analog signals. We were not able to totally remove
this noise but we did reduce it significantly by
experimenting with different ground plane configurations
on the memory board. Enabling the TMS320C31’s cache
also reduced the memory accesses enough to see a
noticeable difference in the noise.

2.2 DAC Output and Optical Encoder Input
Daughter Card.

A DAC/ENC card was designed to give the C3x DSK
the capability to implement input/output tasks for standard
industrial motion control applications. The DAC4813 [8]
chip from Burr-Brown was used to produce 4 channels of
±10V analog output. Two LSI LS7266R1 [6] chips were
used to give the board 4 channels of quadrature optical
encoder input. Figure 2 shows a general schematic for this
card. Design of this board was more challenging when
compared to the memory daughter card; the main
challenge (also true for the remaining two boards to be
discussed) was overcoming the necessity for the zero wait-
state required by the SRAM card. The C3x DSK’s parallel
port interface dedicates the INT2, RESET and RDY lines
for its use. This requires that the daughter cards not use
the RDY line to dictate the length of their read and write
cycles. Because the interface with the memory card must
be zero wait-state, the interface to the DAC/ENC must also
be zero wait-state. This is a problem for both the
DAC2815 and the LS7266R1 chips since the minimum
write cycle for both is 50ns and a zero wait-state write
cycle is approximately 40ns. Our solution to this problem

was to interface “Fast TTL” latch and buffer chips with the
DSP’s address and data bus at the zero wait-state speed.
The outputs and inputs of these latches and buffers are
connected to the data and control pins of the I/O chips.
Through repetitive software steps, the correct read and
write cycles for the specific chip are manually generated
by writing the correct 1 and 0 combinations to the latches.
One way to look at this type of interface is communicating
with a chip through a general purpose I/O port instead of
the normal address and data bus read and write cycles.
Looking at Figure 2, all the data lines and control signals
(RD, WR, C/D, etc) of the DAC and ENC chips are
connected to the output of 74F377 latches or the input of
74F541 buffers. For example, a typical write sequence is
to first write the data for the I/O chip to the latches
connected to D0-D7 of the I/O chip. With the same write
instruction have the WR line latched HI (state 1). Then,
leaving D0-D7 at their same states, pull the WR line low.
Insert a delay (multiple NOP’s) in your program to hold
the WR line low for the I/O chip’s specified time. After
the delay, pull the WR line back high to complete the write
cycle.

Data Bus DAC4813 LS7266R1

D0 D0 D0
D1 D1 D1
D2 D2 D2
D3 D3 D3
D4 D4 D4
D5 D5 D5
D6 D6 D6
D7 D7 D7
D8 D8 WR
D9 D9 RD
D10 D10 C/D
D11 D11 X/Y
D12 EN1 HI
D13 EN2 HI
D14 EN3 HI
D15 EN4 HI
D16 LDAC HI
D17 WR HI
D18 HI CS1
D19 HI CS2
D20 NC NC

Table 2: DAC/ENC Board Data Line Assignments

In the same fashion the read cycle is started by
pulling the RD line low. A delay is again performed to
meet timing specifications. After the delay the data is read
from the buffer chip and stored in a variable on the DSP.
Then completing the read cycle the RD line is pulled high.
The example programming sequence for each I/O chip is
given later in the paper.

With this type of interfacing method, the general
purpose I/O lines have to be assigned certain I/O pins.
Table 2 gives the pin assignment for the DAC/ENC
daughter card. Notice that most pins are shared by both
the DAC4813 and the LS7266R1 chips. The CS (WR in
the DAC’s case) lines, though, are dedicated to one chip.
Thus, the program communicating with the DAC chip
must make sure to keep those lines at the correct state (HI);
otherwise, the ENC chips will also be selected and cause
bus contention. For this reason, Table 1 lists some of the
pins as HI.

Another important aspect of this type of interface
method is the delays inserted between output commands.
Delays were generated by inserting NOP (No Operation)
instructions between the output commands. To be precise
with this method a logic analyzer should be used to
determine the number of NOP instructions between the
output commands. It is advisable to use a liberal number
of NOP instructions for the delays when writing the DSP
code in C and using the C compiler. The number of
assembler instructions between output latch writes (and
input reads) will vary depending on where the code is
located and what optimizations have been set for the C

compiler. Four NOPs between each command was chosen
as the basic delay for the three I/O daughter cards. (Note
that the LCD display does need longer delays in certain
sections of its code.) In most sections of code this is
probably longer than required but we have not had any
performance problems requiring us to optimize the delays.

2.2.1 Example Programming Sequences for the
DAC/ENC Card

This section demonstrates to the reader how the C3x
DSK is programmed to communicate with the different I/O

A23-16

A0-1

D0-7

D0-1

D8-15

D16-19

STROBE

R/W

C3x DSK

74F379

74F377

74F377

74F377

74F541

74F541

74F521
EN

A

O

B
Address
Dip
Switch

A1

A0

CLK

D0-1

EN

CLK

D16-19

EN

CLK

D8-15

EN

CLK

D0-7

EN
EN2

I O

EN1

EN2

O I

EN1

DIR

DIR

WR

EN1

EN3

EN2

EN4
 VOUTS
LDAC

D0-11

RESET

DAC4813

CS (CHIP1)

CS (CHIP2)

RD

WR

C/D
 A/B IN

X/Y

D0-7

LS7266R1
(Both Chips)

 ENC. IN

 +/- 10V

DAC
Reset
Logic

DAC Reset

D17

D12

D14

D13

D15

D16

D0-11

D18

D19

D9

D8

D10

D11

D0-7

Figure 2: DAC/ENC Daughter Card Schematic

chips. Note that appropriate delays need to be added
between some of the instructions to produce the correct
timing for the signals writing and reading the I/O chips.
Reference Table 2 to decipher the different hexadecimal
numbers written to the latches.

A. Writing a Value to DAC4813 Channel 0’s output Register and
Latching that Value to the DAC stage.
i. Set D0 of 74F379 Low to Set the Direction of the

74F541s to WRITE.
ii. Write 0xFE000 + 12Bit DAC value to the 74F377s
iii. Toggle WR (D17) Low, then High, to Write the DAC

value to the DAC4813’s DAC0 output register.
iv. Write 0xEF000 to the 74F377s.
v. Toggle WR (D17) Low, then High, to Latch DAC 0’s

value to the output stage.

B. Writing to LS7266R1 Control Register (Both Chips at the same
Time)
i. Set D0 of 74F379 Low to Set the Direction of the

74F541s to WRITE.
ii. Write 0x3F700 + 8 bit Register designator and value to

74F377s.
iii. Toggle WR (D8) Low, then High, to Latch the value into

the specified Register

C. Writing to LS7266 Pre-Set Register, Counter X and Y.
i. Set D0 of 74F379 Low to Set the Direction of the

74F541s to WRITE.
ii. Write 0x3F781 to 74F377s (RLD, Reset Byte Pointer)
iii. Toggle WR (D8) to Latch Command in LS7266.
iv. Write 0x3F300 + LSB 8 bits of Pre-Set value to 74F377s
v. Toggle WR (D8) to Latch Data and automatically

increment BP to next byte.
vi. Write 0x3F300 + MIDSB 8 bits of Pre-Set value to

74F377s
vii. Toggle WR (D8) to Latch Data and automatically

increment BP to MSB.
viii. Write 0x3F300 + MSB 8 bits of Pre-Set value to

74F377s
ix. Toggle WR (D8) to Latch Data
x. Repeat Steps 2-9 for Counter Y Writing 0x3FB00 + Byte

in steps 4,6 and 8.
xi. Write 0x3F788 to 74F377s (RLD, Transfer PR to

CNTR)
xii. Toggle WR (D8) to Latch Command.

D. Reading LS7266 Chip 1 Counter X’s value.
i. Set D0 of 74F379 Low to Set the Direction of the

74F541s to WRITE.
ii. Write 0x3F791 to 74F377s (RLD, Transfer CNTR to OL

and Reset BP)
iii. Set D0 of 74F379 HI to Set the Direction of the 74F541s

to READ.
iv. Write 0xBF300 to 74F377s. (Note: In READ mode so

least significant 8 bits are Don’t Care)
v. Toggle RD (D9) Low to initiate Read Cycle
vi. Read D0-D7 (LSB byte)
vii. Toggle RD (D9) HI, LS7266 BP is automatically

incremented.
viii. Toggle RD (D9) Low, Second Read
ix. Read D0-D7 (MID SB byte)
x. Toggle RD (D9) HI, LS7266 BP is automatically

incremented.
xi. Toggle RD (D9) Low, Third Read.
xii. Read D0-D7 (MSB byte)
xiii. Toggle RD (D9) HI.

2.3 ADC Input Daughter Card.

We have designed an ADC Daughter Card to further
enhance the I/O capability of the C3x DSK. Many of the
feedback signals used in the control experiments in the
Control Systems Lab have analog feedback. Linear and
rotational potentiometers and analog DC tachometers are
the best examples, however students have also used strain
gage and temperature measurements for special projects.
All these signals can then be brought into the C3x DSK
through the 4 channels of analog to digital converters on
the ADC daughter card. Four individual AD1674 [7]
(Analog Devices) chips were used. This gives the board
simultaneous sampling capability and a four times greater
sampling rate when compared to a multiplexed ADC
circuit. Looking at Figure 3, note that the ADC board is
not quite as complicated as the previous DAC/ENC board.
It does require latches and buffers to interface with the
chips on the board (since the read and start conversion
cycles require delays of 50ns or greater). There are fewer
control signals for these chips. For instance, there is one
output control-line for each chip’s chip select (CS) and the
read/convert (R/C). The remaining lines, D0-D11 and
each chip’s STATUS are inputs. Table 3 indicates the I/O
line assignments used. To start a convergence of an ADC,
the CS line is pulled low and then the R/C line is pulsed.
The C3x DSK program repeatedly reads (polling) the
status line for the specified chip (or chips). When the
status line is low, the ADC has converged and the data
lines can be read.

An improvement to this board would be to have the
status line interrupt the DSP when the AD1674 has
converged. We are presently working on a board with this
capability for our future DSP system. Again, in the
attempt to minimize electrical noise pickup on the ADC
input, separate analog and digital ground planes were used
on the board. These ground planes were then connected
together at a single point on the board. Refer to the
AD1674 data sheet for recommendations on board layout
for this chip.

Data Bus AD1674s

D0 D0
D1 D1
D2 D2
D3 D3
D4 D4
D5 D5
D6 D6
D7 D7
D8 D8
D9 D9
D10 D10
D11 D11
D12 STATUS1
D13 R/C
D14 CS1
D15 CS2
D16 CS3
D17 CS4
D18 STATUS2
D19 STATUS3
D20 STATUS4

Table 3: ADC Board Data Line Assignments

2.3.1 Example Programming Sequences for the ADC
Card

A. Converting and Reading the ADC, 3rd Channel
i. Write 0x2E000 to the 74F377 (Set CS for Chip 3).
ii. Toggle R/C (D13) Low, then HI, to start ADC

Conversion.
iii. In a continuous While Loop Read in D0-D15 checking

for STATUS3 (D19) to go Low, Conversion Complete.
iv. Perform a final Read to pull in the 12 bit ADC value in

D0-D11.
v. Write 0x3E000 to the 74F377 to deselect Chip 3.

2.4 LCD/Digital I/O Daughter Card.

The final daughter card designed for the DSP
development system was a general purpose digital I/O
board that has one digital I/O port dedicated to driving a
Optrex DMC-20261A LCD screen [10]. This board adds
16 lines of digital input and 21 lines of digital output to the
C3x DSK system. The LCD screen has proven to be a
very important part of the development system for
students. Without the LCD screen, students would have a
harder time debugging their program’s source code. The
IMI DSP system that we initially purchased for the digital
control labs had an 8 character LCD display. It was
somewhat useful, but became problematic when trying to
print out floating point numbers. For this new system we
chose a 40 character display (2x20). With this display

size, students have a reasonably large console for printing
their debug messages.

After the design of the previous three I/O daughter
cards, the design of the LCD board was straightforward.
The LCD daughter card only requires the front-end latches
and buffers of the DAC/ENC or ADC board. We switched
from the 74F377 latch to the 74F573 latch since it had tri-
state outputs with an output enable (OE) control line. This
eliminated the need for additional buffers for the read
operations. Figure 4 shows the schematic for the LCD
section of the board only. Table 4 shows the pin
assignment for the LCD section of the daughter card. The
additional 32 digital I/O section of the board is not shown
because it is in effect an exact copy of the LCD control
section. The Y2 and Y3 pins of the 74F138 decoder chip
are used to select this section of the board for either 16 bit
digital reads or 16 bit digital writes.

Data Bus 74F541/
74F573
Data

74F541/
74F573
Control

D0 LCD D0 LCD RS
D1 LCD D1 LCD R/W
D2 LCD D2 LCD E
D3 LCD D3 Spare Out
D4 LCD D4 Spare Out
D5 LCD D5 Spare Out
D6 LCD D6 Spare Out
D7 LCD D7 Spare Out

 Table 4: LCD Board Data Line Assignments

A23-16

A0

D16-20

D8-15

D0-7

USERW

USERR

C3x DSK

74F541

74F541

74F377

74F521
EN

A

O

B
Address
Dip
Switch

CLK

D16-20

EN

D0-11

ST(CHP1)

ST(CHP3)

ST(CHP2)

ST(CHP4)
 20V_R
R/C

CS(CHP1)

AD1674
(ALL 4 Chips)

High (+/-10V)
Impedance
Input Circuit

EN2

O I

EN1

EN2

O I

EN1

CS(CHP4)

CS(CHP3)

CS(CHP2)

A0

CE

12/8

5V

5V

D0-11

D12

D18

D19

D20

D13

D14

D15

D16

D17

Figure 3: ADC Daughter Card Schematic

2.4.1 Example Programming Sequences for the LCD
card.

LCD displays are much slower devices when
compared to the ADC or DAC chips. Long program
delays are needed in the given programming sequences
and in-between instructions to the LCD. Refer to the
DMC-20261A [10] data sheet for timing specifications.

A. Writing a Character to the LCD display.
i. Write 0x1 to the “Control” 74F573: WRITE Mode, Data

Input.
ii. Write 8 bit Character to the “Data” 74F573.
iii. Toggle E (Control D2) HI then LOW Latching in

Character.
B. Writing an Instruction to the LCD.

i. Write 0x0 to the “Control” 74F573: WRITE Mode,
Instruction Input.

ii. Write 8 bit Instruction to the “Data” 74F573.
iii. Toggle E (Control D2) HI then LOW Latching in

Instruction.
C. Reading Status from the LCD.

i. Write 0x2 to the “Control” 74F573: READ Mode,
Instruction Input.

ii. Toggle E (Control D2) HI.
iii. Read in 8 bit data from “Data” 74F541.
iv. Toggle E (Control D2) LOW.

3. Laboratory Experiments

The digital control class utilizing the C3x DSK
system is a 4 credit hour undergraduate and beginning
graduate level course with approximately 20-30 students
per semester. The class is offered by the General

Engineering department; however, a large number of
Electrical and Mechanical engineering students also take
this class. The lecture portion of the class remains mostly
theoretical, covering all the mathematics of the z-transform
and many different discrete control design methods. The
lab portion of the class allows the students to use the
theory taught in the lecture and apply it to an actual
system. Each lab has a simulation portion that the students
are asked to complete before coming to lab. Simulink is
used for most of the simulations, while Matlab for the
controller design. The in-lab assignments ask the students
to program their controller designs on the C3x DSK
system. The first controller’s source code is given to them
for use as a “starter shell” to implement the remaining lab
experiments. Three “plants” are controlled through out the
course of the semester: a DC motor system with
potentiometer angle feedback (Figure 5), the same DC
motor with a flexible torsion spring coupling two flywheel
inertias (Figure 6), and an in-house built inverted
pendulum experiment that has been nicknamed the
“Pendubot” [1,2] (Figure 7).

3.1 System Identification of a DC Motor.

As with any control design, the first step is to identify
a model for the system to be controlled. In this lab the
students are asked to use two techniques to identify a DC
motor system. Students are first asked to use a HP35670A
dynamic signal analyzer to identify a linear transfer
function for the DC motor. The DSA returns the
continuous transfer function for the motor in terms of
tachometer voltage over amplifier input voltage. The

A23-16

STRB

R/W

D0-7

C3x DSK

74F541

74F521
EN

A

O

B
Address
Dip
Switch

E

R/W

D0-7

RS

Optrex LCD
DMC-20261A

Pot
Adjustment
LCD Intensity

EN2

O I

EN1

74F573

LE

D0-7

OE

74F541

EN2

O I

EN1

74F573

LE

D0-7

OE

74F138

E1
E2
E3

A0-2

Y0

Y1

A0-2

D2

D1

D0

Spare I/O
to
Connector

D6

Figure 4: LCD display daughter Card Schematic

students then discretize the DSA transfer function using
four sample rates, 1ms, 5ms, 15ms and 40 ms. These
discrete transfer functions are taken to be the “correct”
transfer function for comparison. A simple least-squares
technique is then used to directly identify the discrete
difference equations/transfer function for the motor in the
time domain. Open-loop impulse and step inputs are
applied to the motor while the response data is collected in
Matlab. With this collected data and the assumed structure
of the difference equations, a set of over-determined linear
equations can be formed. Solving this set of equations
produces the difference equation’s coefficients. Using
several impulse and step inputs at different sample rates,
the students repeat this same procedure. One lesson we
attempt to teach the students is that the impulse inputs do
not do a good job in identifying the system mainly because
they do not excite the system well enough. They also find
that for identification purposes faster sample rates are not
necessarily better. The 1ms sample rate’s runs produce
larger error when compared to the other sample rates due
to the numerical sensitivity of the z-transform at fast
sample rates. This leads students then to see that the
fastest sample rate possible (hardware dependent) is not
necessarily the correct choice for a given control design.

3.2 PD Position Control of the DC Servo
Motor.

The bulk of this laboratory is the calculation and
simulation of the student’s PD controllers. The students
are given two different design specifications and asked to
design PD controllers with sample rates 1ms, 5ms, 15ms,
and 40ms. Using hand calculations and continuous-time
second-order system rules of thumb, they design their PD
controller to give the closed loop system the desired design
specifications. Using the backward difference
approximation of the differentiator they simulate their PD
controllers at the different sample rates. Here they
discover that the continuous gains that worked for a 1ms
sample rate controller no longer meet the specifications
when used with the slower sample rates. This is a perfect
introduction to root locus design in the z-domain. They
also find that at the slower sample rates the specifications
cannot be met. Manually they tune the PD controllers to

achieve either better performance or what they feel is the
best design that can be achieved with the given sample
rate. In lab each student is given the source code for a PD
controller implemented on the C3x DSK system. They
will use this starter file in the upcoming labs to implement
their other control designs. With the starter file they go
through the process of compiling a COFF file for the DSP,
downloading the COFF file to the C3x DSK and
modifying the code to print out desired debug messages to
the LCD screen. Using the gains found in their
simulations, they control the DC motor at the four different
sample rates. Here they will notice that unmodeled non-
linearities, mainly friction, cause their simulations not to
match the actual step responses. Manual tuning is
performed to make the actual response meet or exceed the
design specifications.

The given PD controller code uses a 1 ms sample rate
and implements a digital filter to remove some of the noise
from the velocity calculation. At slower sample rates the
noise is not as prominent and the students find that they
must reduce the order, or even remove the filter, in order
not to introduce significant phase lag in their PD
controller.

3.3 PID Position Control of a DC Servo
Motor.

Lab 3 is an extension to lab 2’s PD control. In this
laboratory assignment students are asked to control the
same DC motor used in the past two labs with a PID
controller. Using root locus techniques, they first design
their PID controller in the continuous domain. The PID
introduces a second pole and zero making its design quite
a bit more complicated. The students see that with the
extra zeros of the PID controller the standard rules of
thumb for a second order system do not necessarily give
accurate approximations. For the simulation section of the
lab, they are asked to first emulate their continuous
controller with both the bilinear (integral term) and
backwards difference (differentiation term) integration
rules. With Simulink, the students then run simulations of
their controller at the two sample rates. If design
specifications are not met, the students manually tune the
control to meet or exceed the specifications.

To complete the experiment the students are asked to
implement their PID controller on the C3x DSK. Taking
the PD control program given in Lab 2 as a starter shell,
they modify the PD controller’s source code to implement
the integral portion. They are asked to think about the
inherent integral wind-up problem of integral control and
develop a software solution for this problem. Running
their controller, they often find that the unmodeled
dynamics of the DC motor may cause disagreement with
simulation. If needed, they are asked to manually tune the
PID control to attempt to exceed the design specifications.

Figure 5: DC Motor Plant

3.4 State Space Control of a DC Servo
Motor with Added Flexible Torsion
Link.

In Lab 4, a flexible torsion link is added to the DC
servo motor setup of labs 1-3 (See Figure 6). On the
opposite end of the torsion rod there is a second flywheel
along with another potentiometer to add higher-order
dynamics to the DC motor system. Four states are
assumed to be known with this system: the angle (θ1) and
angular velocity (θ1’, found by discrete differentiation of
the position signal) of the DC motor and its colocated
flywheel, the angle (θ2) and angular velocity (θ2’, also
found by discrete differentiation) of the non-colocated
flywheel. The students are asked to design a position
controller meeting the given step response design
specifications for the non-colocated flywheel.

With this plant we introduce the students to state
space control methods. Given a state space model,
identified with the DSA, students use discrete pole
placement techniques to find a state feedback control law
of the form u = -K*x where x1=θ1, x2=θ1’, x3=θ2, x4=θ2’.
This controller regulates the torsion system at one position.
To track the reference step input, students must modify the
control law to add the reference signal. The final control
law (u= -K*x + Kpf*r) adds the reference multiplied by a
prefilter gain. The students choose the prefilter by finding
the amount of gain that makes the DC gain of the closed
loop system (Y(z)/R(z)) equal to one. Simulations of their
controller are performed to check performance and
reference tracking.

With their state space controller completed, the
students are asked to implement their design on the C3x
DSK. In running their controllers they again find
differences between the simulation runs and the actual
runs. Unmodeled friction is the cause for most of these
differences. This creates an introduction to the addition of
an integral state in the state space design. The lab
assignment walks the students through the addition of a
state that is the integral of the error (r-θ2). The students
repeat the pole placement design for the new augmented

system and implement the design on the actual system
noting any improvements and/or problems.

3.5 State Space Control of an Inverted
Pendulum experiment (The Pendubot).

In this lab students are introduced to an inverted
pendulum experiment that we have built in house and
nicknamed the “Pendubot” [1,2] (See Figure 7). The
Pendubot is a two link revolute robot that has both of its
rotational joints in the vertical plane. The second link of
this robot is unactuated, giving it the same properties as a
free-swinging pendulum (thus the name pendu-bot). The
goal of the control design for this system is to balance the

second link in a inverted vertical position using the
actuation of the first link and the angular feedback of each
link.

As in the previous lab, this lab emphasizes state
space design and pole placement. However, a difference
in the Pendubot’s control compared to the previous lab’s
torsion plant is that the dynamic equations of the Pendubot
are non-linear. With this plant students must work with
the linearized dynamics of the Pendubot about a desired
operating point to design a stablizing controller. The goal
of the control is only to stablize the second link in the
balancing position so their control law is in the form u = -
K*x, where x (δθ1,δθ1’,δθ2,δθ2’) are the “delta” states of
the linear Taylor series approximation [1]. The students
are asked to first simulate their controller in Simulink
using a given non-linear simulation block of the Pendubot.
By using the non-linear simulation of the Pendubot,
students investigate in simulation the region of attraction
of their linear controller. They also test the robustness of
their controller by simulating an external impulse force
(figure tap) applied to the second link.

Implementation of the state feedback controller on
the C3x DSK is similar to the state space controller for the
torsion plant. However, since the linear balancing
controller is only locally stable, the students are asked to
add a safety check feature to their controller. This safety

Figure 6: Flexible Torsion System

Figure 7: The Pendubot

check monitors the positions of the links. If the links
move outside of an approximate region of attraction of the
balancing controller, the code switches to a PD controller
that controls only the position of link one. This way if the
student gives too large of a tap to the second link the (no
longer valid) balancing controller will not cause the
linkage to spin wildly out of control. If the student then
moves the second link back into the region of attraction the
balancing controller will switch back on. This introduces
the student to programming a type of switching control.

3.6 Design of a Linear Observer used in the
Control of the Pendubot.

The sixth lab is a repeat of the previous lab
controlling the Pendubot. Again the goal of the control
design is to stablize the Pendubot’s unactuated second link
in the vertical (open-loop unstable) position. The
difference between these labs is the method in which the
link’s velocities are calculated. In the previous lab the
velocities are found by discrete differentiation (backwards
difference) of the position signals. This method of
differentiation creates noise in the velocity signal. To
reduce this noise jitter a digital filter must be applied to the
velocity signal.

This lab demonstrates the use of a full order observer
to calculate the velocities given only the positions of the
links. Using the linearized system found in the previous
lab, students are asked to first design and test their state
space control plus linear observer in Simulink. Again the
non-linear simulation block is used in the simulations so
that the students can see the limitations of their linear
controller on the non-linear system. An approximate
region of attraction for their controller plus robustness to
external forces are simulated and compared to the previous
lab’s results. The estimated states are also plotted to see
their convergence rate to the actual states.

Implementation of the linear observer on the C3x
DSK is straight forward but has quite a few more
calculations when compared to the previous lab’s
implementation. These larger number of calculations leads
into a discussion question on why in higher order systems
reduced order observers are much more feasible. Here
students will more than likely need to take advantage of
the debugging techniques they have learned from the
previous lab assignments. Students are again asked to
program a safety check into to their controller that
switches to a stable (at least for link one) controller when
the links move outside of a region of attraction for the
balancing control.

4. Future Developments

At the College of Engineering Control Systems
Laboratory [5] at the University of Illinois, we are working
on some new experiments that could be used in this digital
control course or in a second advanced digital control

course. The concept is to develop experiments around the
C3x DSK that are inexpensive enough to reproduce in
large numbers. This will allow us to hand each experiment
out to the students for the duration of the semester. We
have found that this type of ownership of the lab
experiments generates a large amount of interest in the
material taught in the class. This past semester we offered
a mechatronics class that tried this method of lab
assignments using the “Basic Stamp” micro-controller
from Parallax Inc. Listening to student feedback and
looking at the level of difficulty students chose for their
final projects for the course, we determined the class a
large success.

With this mechatronics class as an example we
looked at our other classes and determined that digital
control using the C3x DSK would be another route to take
to develop inexpensive laboratory experiments. The
current embedded controller system on the drawing table is
to use the C3x DSK along with a single daughter card that
produces and reads the control signals needed. At this
point we would like to try to develop the experiments so
that only the 2K of internal memory on the TMS320C31 is
needed. This will alleviate the need for external SRAM on
the daughter.

All the miniaturized control experiments will be
based on a small low torque 24 volt DC motor from
Pittman Inc. ($90 a piece in quantity of 20). This motor
also comes with a 500 cnt/div quadrature optical encoder.
To drive this motor an inexpensive ($4.50 a piece) PWM
amplifier was chosen from Allegro Inc. This small 16 pin
dip amp chip can drive 30 volts with 3.5 amp peak current
and 2.0 amp continuous current; a good match for the
Pittman motor that has a stall current of 2 amps. So far
with this small motor and amp system we have developed
two control experiments. The first experiment is a small
version of the Pendubot (Figure 8). Its links are made of

plastic making it light enough for the small motor to
control. The second is another inverted pendulum
experiment. This plant is simply a single pendulum with a
motor attached at the free end (Figure 9). The motor’s

Figure 8: Miniature Pendubot

flywheel inertia can be used to generate a torque on the
pendulum by accelerating the inertia of the motor and

flywheel. The dynamics of this system are the same as a
simple swinging pendulum making it a good simple
introduction to non-linear system control. For a third
experiment we have plans of making a simple fly-ball
governor plant that demonstrates speed regulation.

For each of the describe plants, the DSP controller
will need to output a PWM signal to drive the motor and
read quadrature optical encoder channels for the feedback
signals. The daughter card is then quite simple only
requiring two main chips. The LS7266R1 chip to read two
optical encoder signals and for the PWM output a single
timer chip (i.e. 82C54) can be used. Since we plan on not
using an external memory daughter card, there is no longer
a requirement for having the new daughter card
communicate at a zero wait state interface. This removes
the needed latches and buffers used in our general purpose
DSP system. The DSP data bus can be programmed for 1
or 2 wait states and the chips can be written to in the
normal read and write cycle fashion.

All this development is in the beginning stages and
there are a number items to over come before we
implement these types of experiments in our lab course.
One issue is developing all the labs to fit in the 2K of
internal memory of the TMS320C31. The main reason
this small amount of memory could be a problem is that
we would like to stay with C programming for the
implementation of the digital controllers. Also we plan on
adding a LCD screen to the system for debugging
purposes. Since character manipulation functions like
“sprintf” take up relatively large amounts memory, we will
have to develop some basic character manipulation
functions take perform our needed tasks. We are also
looking at using a serial LCD screen instead of a parallel
interface type to see if the interface code is reduced.

The packaging of all these experiments is going to be
a challenge. We need to come up with some kind of

student “toolbox” that will contain all the items needed for
their experiments. This way the students will be able to
bring the experiments into lab to get started and also get
help from the professor or teaching assistants and then
pack it all up and take it home to finish up the lab.

Probably the largest issue is the maintenance and
support for all these experiments. Not only repairing
components that break, but also helping the students in the
installation and support of the software they will need to
run on their home PCs. This could be become a large
problem and if not handled well create the opposite effect
and make the students uninterested in the digital control
experiments. Extensive, detailed documentation and
trained teaching assistants will be a key in getting this
method to work well in the class environment.

References

[1] Block, D.J., Mechanical Design and Control of the
Pendubot, M.S. Thesis, Department of General
Engineering, 1996.

[2] Block, D.J., and Spong, M.W., “Mechanical Design
& Control of the Pendubot,” SAE Earthmoving Industry
Conference, Peoria, IL, April 4-5, 1995.

[3] TMS320C3x DSP Starter Kit User’s Guide, Texas
Instruments, Inc., Dallas, TX, 1996.

[4] TMS320C3x User’s Guide, Texas Instruments, Inc.,
Dallas, TX, 1997.

[5] Alleyne, A., et.al., “A College-wide Laboratory-
Based Program in Control Systems Technology at The
University of Illinois at Urabana-Champaign,” 1996
Conference on Decision and Control, Kobe, Japan, Dec.
1996.

[6] LS7266R1 24-Bit Dual-Axis Quadrature Counter,
LSI Computer Systems, Inc., Melville, NY, November
1996.

[7] AD1674 12-Bit 100 kSPS A/D Converter Rev. C,
Analog Devices Corp., Norwood, MA, March 1994.

[8] DAC2815 Dual 12-Bit Digital-To-Analog Converter,
Burr-Brown Corp., Tucson, AZ, 1995.

[9] CYM1831 64K x 32 Static RAM Module, Cypress
Semiconductor Corp., San Jose, CA, May, 1995.

[10] DMC-202621 (20character x 2 lines) Liquid Crystal
Display, Optrex America Inc., Plymouth, MI, November
1995.

Figure 9: Inertial Balanced Inverted Pendulum

