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Abstract

Java is for sure the most popular programming language today. Its popularity is based on the
portability of the code and on the elegant programming framework provided by the language:
built in garbage collection and multi-threaded support, easy Internet application development
through socket streams, and last but not least familiar syntax. Even if a lot of work has already
been done related to Java Virtual Machines (JVMs) and a large number of Java applications are
already available, few of these have penetrated the DSP world. Our work aims to bridge this gap
between DSP architectures and Java. Such a connection would open the DSP world to a much
larger class of consumers, a place now occupied by general-purpose processors.
The two main research directions we see in improving the performance of a JVM for DSP
architectures are: (1) writing a Java bytecode Just-In-Time compiler optimized for a specific DSP
platform, and (2), taking advantage of the available parallelism present in DSP multi-processor
architectures. Our work focuses on the last issue. We propose a distributed JVM designed for a
multi-processor DSP architecture. Due to the unavailability of the hardware at the moment, we
have implemented our ideas on a network of general-purpose processors, emulating the topology
of the quad-processor DSP board constructed by Innovative DSP. We emulate the I/O channels
connecting the processors through TCP sockets and interrupts with Unix signals. All the protocols
use a constant number of messages, making it possible to estimate the costs of all distributed
actions.
In this document we show the design and test results obtained with DISK. While a distributed
JVM architecture may not prove to be an exciting project for highly-specialized DSP processors
(such as TI's TMS320 family), we believe that this work may be successfully applied to multi-
processor architectures based on RISC processors enhanced with signal processing capabilities
(such as the new ARM9E processor). Other projects are working on porting Java to this class of
processors. On top of this we provide a Java parallel-processing platform that binds the power of
Java distributed computing with signal processing.
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1 Introduction

Java is slowly starting to penetrate the DSP world. Both JDK [3] and Kaffe [5] have ports
available for ARM processors. Nevertheless, the world of DSP multiprocessing remains
unexplored by Java environments or applications. There are JVMs for multiprocessor
architectures built with general-purpose processors such as Solaris or NT SMPs, but none for
DSP multiprocessors.
The reason is not only the fact that Java ports have been available for DSP architectures only
recently but also the fact that most (if not all) DSP multiprocessor systems lack shared memory.
The C6X multiprocessor boards built by BlueWave [1] and Innovative Integration [2] have
separate memories for each processor on board. Inter processor communication (if available) is
performed through dedicated I/O channels. Hence, even if the processors are tightly connected,
we believe that these architectures are better described as multicomputers, where the inter
processor communication is performed through message passing not shared memory. Another
possible architecture fitting the same classification is a cluster of  ARM processors connected by
a high-speed network.
The Java Virtual Machine Specification (JVMS) [4] makes the assumption that shared memory is
available. Once this assumption is no longer true, as is the case with DSP multiprocessors, one
needs a distributed shared memory protocol to provide the illusion of shared memory.
It is possible to show that under the assumption that programs are data-race free, the JVMS is
equivalent with Release Consistency [6], a well-known consistency model for distributed shared
memories. It is beyond the purpose of this paper to show this equivalence. Instead, we describe a
distributed JVM architecture built upon the Release Consistency model, named DISK
(DIStributed Kaffe). As the name implies, we built our system on top of the Kaffe Virtual
Machine (we used version 1.0.b3). DISK provides a distributed Java environment, where threads
are transparently allocated to processors based on a customizable processor allocation algorithm.
The object heap is kept consistent using one of the four protocols implementing Release
Consistency. DISK is thoroughly implemented at the JVM level. We do not require any changes
to the Java language or compiler.
The DISK architecture and protocols are described in section 2. DISK is a distributed-shared-
memory system implemented from scratch to take advantage of the Java unique features (object-
oriented, just-in-time compiling). Section 3 presents the test results for three benchmark
applications. We test the performance of four protocols implementing Release Consistency. Such
a study is not yet available for the Java language. Our results indicate that there is no clear
winner, each protocol performing best under specific circumstances. This indicates that a run-
time adaptive protocol might be the best solution overall. Section 4 concludes the paper.

2 Architecture

In this section we describe the DISK architecture and the protocols used to implement the Release
Consistency model.
We show the block diagram of a DISK node in figure 2.1. As shown in the figure we use the
Kaffe VM to execute Java bytecode. The interaction between Kaffe and DISK's distributed
environment is done through software barriers. Release Consistency is maintained over the
cluster of workstations through the protocols implemented in the RC Protocols module. The
object, lock, and thread management module is present only on master processors. This module
tracks the location of every global object and lock, and the processor where every thread is
allocated. We currently use one master processor per cluster, but the management tasks could be
easily distributed to a larger number of processors. The communication layer is in charge of the
input and output communication channel management. We have currently implemented the
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communication layer on top of TCP, but it could easily be ported over any reliable
communication protocol. The RC-compliant protocols and the management module communicate
in a topology-independent way through the services offered by a light Remote Procedure Call
(RPC) protocol.
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Figure 2.1: Block diagram of a DISK node

DISK is implemented over a bus-connected cluster of workstations. On top of this, the
communication layer constructs software point to point channels between all nodes. The topology
obtained was highly influenced by the quad-processor C6x board designed by Innovative
Integration. This topology is depicted in figure 2.2 for a system with four processors.
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Figure 2.2: Point-to-point-connected system with centralized I/O

Note that only processor 0 (the master processor) has full I/O access. This is because the master
processor runs also a file server that provides I/O transparency for the Java threads. To reduce
initialization overhead we provide partial I/O capabilities to the slave processors to allow them to
independently load Java classes at startup. This design choice yielded an approximate two times
faster system initialization compared to the system where all I/O accesses go through the master
processor. On a tightly connected DSP multiprocessor board, the Java default classes could be
stored inside processor-local ROM for speedup (Kaffe’s classes fit in a 500 KB buffer).
The block diagram of the communication layer is presented in figure 2.3.
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Figure 2.3: DISK communication layer

Each DISK node supports three types of threads:

• Dispatcher threads - Each input channel is monitored by a dispatcher thread. The dispatchers
are dormant most of the time. They are awaken by the thread system whenever a packet
arrives on the monitored channel. The dispatcher reads the packet from the channel into a
memory buffer. If the message contained in the packet is a reply, the thread waiting for it is
awaken. If the message is a request, a worker thread is designated to serve the request.

• Worker threads - Each processor has a pool of worker threads. A worker is created when a
request waits to be serviced and the worker pool is empty. When a worker finishes the
assigned request it returns to the pool where it waits for the next job.

• Client threads - Client threads are created by the Java application. For any program at least
one client thread is created to run the main method.

To support this organization and to avoid excessive dynamic allocation at runtime (garbage
collection is expensive), a pool of buffers is created at system initialization and dynamically
extended according to the application needs. The dispatcher threads use these buffers when
incoming packets are read from the I/O channels or by any other thread that needs to build a
packet. The buffer returns to the buffer pool when it is not needed any more.

Having in mind a DSP environment, we made the assumption that virtual memory is not
available, hence we do not use the virtual memory management unit to implement the consistency
protocol. Instead we modify Kaffe's Just-In-Time (JIT) compiler to call our own consistency
functions before any read or write access to object data. We modified the JIT code for the
following bytecode instructions:

• PUTFIELD to insert a write barrier before object accesses;
• GETFIELD to insert a read barrier before object accesses;
• IASTORE, LASTORE, FASTORE, DASTORE, AASTORE, BASTORE, CASTORE,

SASTORE to insert write barriers before array accesses;
• IALOAD, LALOAD, FALOAD, DALOAD, AALOAD, BALOAD, CALOAD, SALOAD to

insert read barriers before array accesses.

In the current DISK version we do not change the PUTSTATIC and GETSTATIC instructions,
hence we do not offer consistency support for class (static) data.
Due to the software barriers the semantics of the above instructions, plus MONITOR_ENTER,
MONITOR_EXIT, and thread creation are changed. To keep things familiar for the reader not
used with the Java instruction set, we rename the instructions that require read barriers as READ,
the instructions that require write barriers as WRITE, MONITOR_ENTER and
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MONITOR_EXIT as LOCK and UNLOCK. We also use the name TCREATE to indicate the
thread create operation. The semantics of these instructions are presented in figure 2.4.
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Figure 2.4: Distributed semantics for bytecode instructions.
(a) READ; (b) WRITE; (c) LOCK; (d) TCREATE

In figure 2.4 we denote with M the master processor, with S1 the (slave) processor trying to
access a shared resource, and with S2 the processor having the resource. The semantics for
READ and LOCK are obvious. During a WRITE operation we have to make sure that the object
location recorded by the master processor is protected. Hence, message (1) locks the object record
on the master processor, and message (4) unlocks it after the new location of the object is
recorded. Message (1) of the TCREATE operation is sent to the master processor in response to a
call to java.lang.Thread.start(), the Java native method that starts a new thread. The master
processor allocates S3 as the host processor of this new thread, based on some processor
allocation algorithm (currently we use a round-robin allocation algorithm). Message (2) is sent to
the processor S2 currently owning the Java Thread object corresponding to the new thread.
Message (3) containing a copy of this object is sent to processor S3 where the new thread is
created. Note that no reply is expected. Processor S1 resumes execution as soon as message (1) is
successfully delivered.
Note that the operations described in figure 2.4 apply only to shared objects not available locally.
DISK is intelligent enough to detect if an object is not shared (i.e. if it is accessed only by threads
located on the same processor), in which case the software barrier is greatly simplified.

DISK provides Release Consistency (RC), a JVMS compliant consistency model, for shared
objects. An informal description of RC is that the changes to objects guarded by locks are sent to
remote processors only when the lock is released. We refer the reader interested in a formal
definition of RC to [6]. As of today there are two main flavors of RC: Eager Release Consistency
(ERC) which forces the propagation of changes during the UNLOCK operation, and Lazy
Release Consistency (LRC) [7], which delays sending the changes to shared objects until the time
of the next LOCK operation. [7] shows that these two models are equivalent for programs where
all conflicting accesses to shared objects are protected by synchronization mechanisms (data-race
free programs). Just like cache coherence protocols, both ERC and LRC can be invalidate-based
(when only invalidation messages are sent) or update-based (when the modified data is appended
to consistency messages).
The protocols implementing RC may decide to maintain a single writable copy for each object
(similar with cache coherence protocols), or allow multiple writable copies of the same object
[8][10]. In the present stage we implement only single-writer protocols but we are planning to
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investigate the performance of multiple-writer protocols as well. At this point, DISK supports the
following protocols:

• LSI – LRC, single writer, invalidate
• LSU – LRC, single writer, update
• ESI – ERC, single writer, invalidate
• ESU – ERC, single writer, update

The performance of these protocols is analyzed in section 3.

3 Test Results

We have tested the performance of the protocols introduced in section 2 on the following three
benchmark applications:

• PMC – This is a producer – multiple consumer problem. The producer repeatedly writes to a
shared object and blocks until all consumers have read the resource. The tests presented here
have been performed for 8 consumers and 100 iterations.

• JCB – This is an implementation of the Jacobi method for solving partial differential
equations. The problem input is a two-dimensional matrix. During each iteration, every
element is updated to the average of its nearest neighbors. Each Java thread gets a number of
adjacent rows to work on. These tests have been performed on a 240x240 matrix, with 8
threads and 25 iterations.

• MM – This is a parallel matrix multiplication algorithm, where each element in the output
matrix is computed by a separate thread. We used 20x20 matrices for this application.

Note that these applications are not written to take advantage of the available parallelism. Instead,
the purpose is to stress the system by using a large number of synchronization points, in order to
evaluate the relative performance of the proposed protocols. Due to these features, these
benchmarks do not scale well when the number of processors is increased. We performed the
tests on 2, 3 and 4 processors.
Nevertheless, we believe that these programs are fit to test the relative performance of the
protocols introduced in section 2. Even if these applications are simple, they span a large class of
real life applications:

• PMC uses a small number of shared objects, but they are repeatedly accessed.
• JCB as well has a small number of shared objects, but their size is much larger than the

average Java object size (each row is a separate object).
• MM uses a large number of shared objects (each matrix element is here a separate object), but

the shared object size is much smaller than the average object size.

The results obtained are presented in figure 3.1.a to 3.1.e for PMC, 3.2.a to 3.2.e for JCB, and
3.3.a to 3.3.e for MM. For each application we measured the additional memory needed by the
protocol, the execution time, the number and size of packets sent throughout the execution, and
the number and size of shared objects and locks versus the total number and size of all objects
and locks.
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Figure 3.1.a: Protocol additional memory
(PMC)
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Figure 3.1.b: Execution time (PMC)
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Figure 3.1.d: Packet Data (PMC)

Total Objects Total Locks Shared Objects Shared Locks
Count Data Count Data Count Data Count Data

2 15923 641136 39 1560 19 1520 3 120
3 16377 667664 55 2200 22 1664 4 160
4 16839 694544 74 2960 25 1808 6 240

Figure 3.1.e: Shared versus total objects/locks (PMC)
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Figure 3.2.a: Protocol additional memory
(JCB)
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Figure 3.2.b: Execution time (JCB)
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Figure 3.2.c: Packet count (JCB)
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Figure 3.2.d: Packet data (JCB)

Total Objects Total Locks Shared Objects Shared Locks
Count Data Count Data Count Data Count Data

2 1851 785216 47 1880 499 483520 16 640
3 2551 10530056 67 2680 744 724792 20 800
4 3249 1320672 85 3400 987 965840 22 880

Figure 3.2.e: Shared versus total objects/locks (JCB)
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Figure 3.3.a: Protocol additional memory
(MM)
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2 16406 1095432 634 25360 3131 139072 604 24160
3 18172 1164632 716 28640 4463 182472 673 26920
4 19904 1230024 764 30560 5761 222064 708 28320

Figure 3.3.e: Shared versus total objects/locks (MM)

PMC uses few shared objects hence the additional memory required by all protocols is negligible
(see figure 3.1.a). The interesting result for this benchmark are the execution times presented in
figure 3.1.b. The update protocols (both LSU and ESU) perform much better than their invalidate
equivalent protocols. The explanation is based on the size of the shared objects (see figure 3.1.e).
For PMC, the average shared object size ranges between 70 and 80 bytes. Even though this is
about two times larger than the average Java object size reported in [12], it is still small. Hence,
as figure 3.1.b and 3.1.c show, appending object data to consistency messages reduces the
execution time by reducing the number of consistency messages sent. Obviously, the amount of
data sent by the update protocols is larger than the invalidate protocols, but the difference is
small, as figure 3.1.d shows.
An analysis of figures 3.1.c and 3.1.d shows that update protocols reduce the number of messages
with the expense of sending slightly more data. This indicates that update protocols are better fit
for systems where the message transfer overhead is large (i.e. TCP), hence one would like to
reduce the message count as much as possible. On the other hand, invalidate protocols are fit for
systems where the main concern is the amount of data to transfer, where the transfer initialization
overhead is negligible (i.e. DSP processors tightly-connected on the same board).
Nevertheless, update protocols must be used with care. As seen in figure 3.2.d, for JCB where the
average shared object size is large (roughly 1 KB), update protocols end up sending at least five
times more data, even though the message count is less than the message count for invalidate
protocols. As seen in figure 3.2.b, this yields execution times almost two times longer for the
update  protocols. This suggests that probably the best performance would be achieved by an
adaptive protocol, a protocol capable to decide between update or invalidate based on the object
size. We are planning to investigate such a protocol in the near future.
Figure 3.3.b shows a relatively close performance of all four protocols for the MM benchmark.
The troubling result for this application is the large protocol overhead (almost 25% of the heap
space). This is caused by the large number of very small size shared object (each element in the
output matrix is a word-sized shared object). Having a large number of small size objects is the
worst scenario for DISK, since every shared object is managed separately. Every shared object is
allocated a separate header to store needed information such as the object state, the system-wide
id, and queue of threads waiting for a valid copy of this object. This adds a significant overhead if
the object size is small. While we are working to reduce the shared object header, these results are
also an indication for the programmer. A wise programmer should reduce the number of shared
objects (i.e. objects referred from a Thread object) to a minimum.
Another interesting observation is the fact that the ERC protocols, generally discarded as having a
worse performance than LRC, are successfully competing with LRC protocols. In two out of
three applications, ERC protocols outperform their equivalent LRC protocols. This can be
explained by the relatively uniform distribution of shared objects accesses in all studied
applications. Hence, broadcasting changes to all processors when locks are released, the way
ERC protocols work, proves to be a better solution.

4 Conclusions

We have introduced in this paper a distributed Java virtual machine architecture we named DISK.
Currently DISK is implemented on a cluster of general purpose processors, but it is immediately
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portable to DSP architectures. All the hardware and operating system requirements needed by
DISK are already presented on DSP platforms: we use the Kaffe virtual machine (already ported
on ARM processors) to execute Java bytecode. We do not use the virtual memory management
unit to implement the consistency protocol. Instead we modified Kaffe’s just-in-time compiler to
insert calls to our consistency functions before any object access. All these features make DISK
portable to virtually any architecture.
DISK implements the Release Consistency model, a memory consistency model equivalent with
the Java virtual machine specification. DISK currently supports four protocols implementing
Release Consistency. The analysis of this protocols shows that, unlike page-based distributed
shared memories, for DISK there is no clear winner. Different factors, like the speed of the
interconnection network, the average shared object size, or object distribution, favor one protocol
over the other. This suggests that an adaptive system capable to dynamically switch between
protocols may be the best solution.
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