
Facial Motion Estimation with the TMS320C62xx Family

Francisco Barat Quesada, Patricia M. Burgess*, Rudy Lauwereins
K.U.Leuven, Belgium *Texas Instruments Inc.

Francisco.Barat@esat.kuleuven.ac.be, p-burgess@ti.com, Rudy.Lauwereins@esat.kuleuven.ac.be

Abstract
Very low bitrate coding is an important part of the
MPEG-4 standard. To obtain maximum compression in
videoconference sequences a technique called semantic
coding can be used. With this technique, the face of the
speaker is represented by a model, and its movement
between frames is coded with a small set of parameters.
The quality of the motion description grows with the
number of parameters used. As with all MPEG standards,
the encoder algorithm is not described. This leaves the
door open to many possible implementations.
In this paper we describe an algorithm used to calculate
the facial motion parameters and the implementation of
this algorithm using the current members of the
TMS320C62xx family, which can be the starting point for a
“Simple Facial Animation Visual Profile” encoder. The
algorithm is based on the optical flow constraint equation
and a set of equations that describe the movement of the
face. The estimation is performed in two parts: first the
movement of the head as a rigid object is estimated and
then, the facial movements are calculated.
The implementation of this algorithm is then discussed for
the following C62xx family members: C6201, C6201B,
C6202, C6203 and C6211. The implemented algorithms
make full use of the VLIW processing power of the
processors. The main difference between the
implementations is the use of memory and DMA; they all
maintain the same processing kernels.

1 Introduction

Many different methods have been used in video coding
throughout the years. The goal behind this evolution is data
compression. Hybrid coding is today's choice for most
applications. Good examples of this fact are the MPEG-1
[1], MPEG-2 [2], and H.263 [3] standards.

Many of today's distributed applications need to
transmit video information through greatly limited
bandwidth channels. In such applications however, e.g.
videophone systems, these techniques don’t offer the
required quality level.

In these applications, the coding standards mentioned
above suffer from artifacts that greatly reduce the picture

quality. There is a need for very low bitrates, and high
quality video sequences. Usually, the images in this kind
of applications depict a known type of object (e.g. in
videophony, a talking head). Since the images captured
nearly always portrait the known object, there is a lot of
useful information in the picture itself that can be used to
improve coding efficiency.

Model-based coding (also known as semantic coding) is
a technique that uses this information to further compress
the sequence. Model-based coding of faces has been
recently internationally standardized for the first time in
the MPEG-4 standard [4]. With the facial animation tool
of MPEG-4, the movement of a face can be coded with as
little as 2kbps.

In model-based coding, the real world in front of the
camera is represented by a 3D model and the movement of
the model is represented by a set of motion parameters.
The use of these parameters is the key to higher
compression ratios.

In the case of facial coding these parameters can be
divided in two groups: global and local motion parameters.
The global motion parameters treat the face as a rigid
object and represent its movement as a combination of
translation and rotation. The local motion parameters
represent localized movement of parts of the face, such as
opening the mouth, turning the eyes, and raising the
eyebrows.

The SNHC (Synthetic and Natural Hybrid Coding)
group of MPEG-4 has standardized a tool, called facial
animation tool, [5], that is the basis for semantic coding.
In this tool, local motion parameters are called Facial
Animation Parameters (FAPs). There are 68 standardized
FAPs. 66 are low-level FAPs that correspond to simple
movements of the face, and 2 are high-level FAPs that
correspond to expression and viseme animation. A small
sample of them can be seen in Table 1.

Simple FAPs can be divided in two categories:
translation based and rotation based. The difference
between them is based on the kind of movement they
represent. Translation based FAPs specify the translation
of part of the face (e.g. raise_l_ear), while rotation based
FAPs specify the rotation of part of the face (e.g.
yaw_r_eyeball). In our simplified approach, we only
work with translation based FAPs. This limits the

available set of FAPs but permits the use of simpler
equations.

Table 1 Sample FAPs

FAP name FAP description
open_jaw Vertical jaw displacement

(does not affect mouth
opening)

raise_r_m_eyebrow Vertical displacement of
right middle eyebrow

raise_l_ear Vertical displacement of
left ear

yaw_r_eyeball Horizontal orientation of
right eyeball

stretch_l_cornerlip Horizontal displacement
of left inner lip corner

As with all MPEG standards, the facial animation tool
encoder algorithm is not described. This gives way to
many possible implementations. In this paper we present
an algorithm used to estimate both the global and the local
motion parameters. The algorithm is based on [6], [7], [8]
and [9].

Facial motion estimation algorithms are extremely
computation-hungry. For this reason, a powerful
architecture is needed for their implementation. The C6x
family, [10], provides such an architecture. With its
double datapath VLIW architecture, the C6x promises
enough performance for the implementation of the
presented algorithm. We will focus on the currently
anounced fixed-point members of the family, namely the
C6201, C6201B, C6202, C6203 and C6211. All these
members share the same processing core but have a
different configuration of memory and peripherals. These
differences will lead to implementation differences.

The paper is organized as follows. In section 2 we
describe the algorithm, without discussing its
implementation on the C6x family. In section 3 we study
an implementation of this algorithm in the already
mentioned members of the C62xx family. In section 4 we
present some preliminary results of the implementation of
the algorithm on these processors and, finally, in section 5
we derive some conclusions.

2 Description of the algorithm

In this section we describe the algorithm used to
estimate the movement. The algorithm is based on the
traditional optical flow equation.

The estimation system needs a 3D mesh of the face and
the corresponding texture to create the synthesized image
by affine deformation and texture mapping. The mesh is
made up of triangles. The model used in our experiments
(known as the Candide model) can be seen in Figure 1.

The process through which this model is obtained is not
discussed here. This step is very important for a successful
implementation of this kind of coders. There is a great
amount of work being done in this field.

Figure 1 The Candide model

The estimation of the head movement between two
consecutive frames is done using a gradient-based
approach based on the work of on [6], [7], [8] and [9]. The
basic idea is to synthesize an image similar to the one
recently captured from the camera and, by analyzing the
differences between them, find a new set of parameters.
This new set of parameters should move the model to a
position as close as possible to the position of the face in
the captured image. This technique receives the name of
analysis by synthesis.

The movement of a point k of the 3D model can be
described by the following equation:

() () TVpRp nk,kk

rrr +




 ⋅∆+⋅=∆+ ∑

=

N

n
nattt

0

Where pk is a point of the model, R is the rotation
matrix, T is the translation vector, Vk,n are the deformation
vectors associated with each of the FAPs we are working
with, and an are the intensities of each of the FAPs. In this
equation we have only represented translation based FAPs.
As we mentioned before, the other kind of simple FAPs,
rotation based, are left out from this model. The
introduction of them in the above equation would
complicate the system. Furthermore, these rotation based
FAPs (that represent eye movement) are better obtained
with other methods. High-level FAPs can be obtained
from the set of low-level FAPs. This procedure is not
discussed here.

Movement is estimated in two phases. First, the global
movement is estimated as if there was no local movement
involved. Then, local movement is estimated as if the
global movement had been precisely solved, as in [7].
This approach allows us to make certain simplifications on
the calculations without introducing a noticeable amount of
error. Once the global parameters have been found, the
local motion parameters are estimated between the input
image and a synthesized image using the recently found
global parameters. In this second step, there is no global

movement because it has already been accounted for in the
previous step.

We will now focus on the global motion calculation. If
we assume that local movement is negligible and that
global movement between two frames is very small, we
can represent the velocities of each point as:

()
()
() 















+
















⋅

















−
−

−
≅

















z

y

x

zk

yk

xk

xy

xz

yz

zk

yk

xk

T
T
T

tp
tp
tp

RR
RR

RR

v
v
v

,

,

,

,

,

,

0
0

0

The traditional optical flow equation relates changes in
image brightness intensity with velocity vectors:

0,,,,, =+′⋅+′⋅ tkykykxkxk IvIvI
Assuming orthogonal projection along the z axis, we

can arrive to the following equation by combining the
previous equations:

()
()

() () () ()ttItI

T
T
R
R
R

tptp
tp
tp

kk

y

x

z

y

x
T

k

k

xkkykk

zkk

zkk

∆+−=























⋅























⋅+⋅−
⋅
⋅−

y,

x,

,y,,x,

,x,

,y,

I
I

II
I
I

The unknowns in this equation are Rx, Ry, Rz, Tx and Ty.
(Tz is no longer present because a movement along the z
axis produces no change in an image formed by orthogonal
projection.) The other coefficients can be calculated for
every point of the model. Ix, Iy and It represent the partial
derivatives that can be obtained from the image data. The
z value can be interpolated from the z value on the vertices
of each triangle. With this, we obtain an over-determined
equation system:

YUH =⋅
Where H is a matrix of coefficients size (n,5), U is the

unknown matrix, size (5,1) and Y is another matrix of
coefficients, size (n,1). (n is the number of pixels
processed). We can solve this system by a least mean
squares method (LMS):

() YHHHU TT ⋅⋅⋅= − 1

Once the global movement is calculated, a new
synthesized image using this recently obtained parameters
is created. The differences between this synthesized image
and the input image are due only to local movement (if the
global motion estimation process worked within a certain
margin of error). In this case, the velocities of each point k
can be written as:

∑
=

⋅∆=
N

n
nk av

0
nk,V

rr

Again, by use of the optical flow equation we get the
following equation, similar to the global motion estimation
one:

() () 0
0

,,,
0

,,, =−∆++⋅∆⋅+⋅∆⋅ ∑∑
==

tIttIVaIVaI kk

N

n
ynknyk

N

n
xnknxk

The unknowns are the intensities of each FAP, ai. The

values of Vk,n of each pixel can be interpolated from the
Vk,n values at each vertex of the triangles. The rest can be
directly computed from the images. Using a similar
approach to global motion, we can find the unknowns (A):

() IFFFA TT ⋅⋅⋅= − 1

Due to non-linearities in the system, the above
procedures do not provide an exact solution. To obtain a
better one an iterative process is done. This process is
represented in Figure 2.

Local
Estimation

Parameter
Correction

I(n)
Local

Parameters

S(n-1,l)

Global
Estimation

Parameter
Correction

SynthesisI(n)

Global
Parameters

S(n-1,k)

I(n)

Figure 2 Analysis through synthesis loop

In a first step, global motion is estimated. The control
flows around Synthesis, Global Estimation, and Parameter
Correction for a number of times before doing the local
motion estimation loop. The minimum number of
iterations depends on the noise of the images, the number
of pixels used in the computations, the movement between
the images and many other factors. The number of
iterations can be fixed in the program (providing a known
execution time) or can depend on the values estimated
(with an unknown execution time). In case that the
number of iterations is determined at runtime, a useful
technique for deciding when to stop iterating is when the
movement parameters change less than a certain amount.

After calculating global movement, the local estimation
loop is executed. It includes Synthesis, Local Estimation,
and Parameter Correction. Again, the number of iterations
can be fixed or decided at runtime.

3 Implementation description

The above algorithm has been implemented for the
following members of the C62xx family: C6201, C6201B,
C6202, C6203 and C6211.

All members of the C62xx family share the same
processing core. The main difference between them is the
configuration of the internal memory and the integrated
peripherals. This will lead to different algorithms for
memory management and external memory accesses. For
this reason, we will first discuss the implementation of the
computation part of the algorithm, which is common to all

devices. We will then focus on the implementation of the
memory management on the different members of the
family.

3.1 Processing

The motion estimation process returns a set of
parameters that describe the movement that has to be
applied to the model in order to synthesize a face as similar
to the one in the input image. This process is applied to
each input image. The parameters obtained are combined
in an additive manner to finally obtain a set of absolute
positioning parameters.

The main steps for one iteration of the global motion
estimation process presented above, are as follows:
1. Synthesize an image with the calculated parameters of

the previous input image.
2. Calculate the H and Y matrices.
3. Solve the over-determined system of equations and

obtain U.
Step 1 involves creating a synthesized image in a

memory buffer, be it internal or external to the chip. Step
2 accesses this buffer and the captured image buffer. This
can be seen in Figure 3. A major improvement in the
execution time can be obtained if we note that the
synthesized image is only used in the calculation of the H
and Y matrices. If we mix steps 1 and 2 into a more
complex one, we can reduce the memory requirements and
the memory accesses. This will lead to a better
performance. Thus, steps 1 and 2 are merged into a step
that combines the synthesis and the analysis (this concept
is different to the analysis by synthesis mentioned before).
This is a kind of loop merging. Every time a pixel is
synthesized, its contribution to the H and Y matrices is
computed. The pixel value is not used anymore. Memory
accesses are transformed into faster register transfers.

Synthesis
H and Y

Calculation
Overdetermined
System Solving

Sy
nt

he
siz

ed
 Im

ag
e

H
 a

nd
 Y

 m
at

ric
es

Figure 3 Non optimized estimation iteration

The size of the H and Y matrices is proportional to the
number of pixels processed, which can be quite large.
These matrices are multiplied by HT in step 3 in the LMS
solving step seen before. It is possible to calculate the
contribution of each pixel to HTH and HTY during step 2.
This reduces the number of memory accesses and the
memory requirements, as can be seen in Figure 4. Thus,

the main processing algorithm is transformed into the
following:
1. Calculate HTH and HTY values during synthesis and

analysis.
2. Solve the regular equation system.

Synthesis and
Analysis

Normal System
Solving

H
T
H

 a
nd

 H
T
Y

 m
at

ric
es

Figure 4 Optimized estimation iteration

Pixel processing is done by grouping pixels into
triangles. All the pixels inside a triangle are processed in a
sequential manner: from left to right and from top to
bottom. This leads to an improvement in performance by
reuse of values. The following is the pseudocode for step
1 above:

for (each triangle)
{
 Load triangle data.
 for (each line in a triangle)
 for (each pixel in a line)
 {
 Calculate synthesized pixel.
 Calculate partial derivatives.
 Calculate coefficients for H
 Calculate HtH contribution.
 }
 }
}

To achieve the highest processing velocity, all the data
for one triangle is first stored into internal memory. This is
represented by "Load triangle data" in the pseudocode.
The ideal situation would be having the texture buffer and
the captured image both in internal memory. This is not
possible in most of the C62xx devices due to the size of
internal memory. The solution to this problem varies from
one device to another. This will be discussed in the
following subsection.

The local motion estimation process is very similar; the
main differences are in the calculations of the coefficients
of the equation. In this case, for each triangle we have a
set of FAPs that affect it. The ones that do not affect the
triangle have Vk,n value of 0. Instead of calculating all the
coefficients from the local motion estimation equation, we
can limit the calculation to those non-zero coefficients. A
different loop is used depending on the number of FAPs
that affect the triangle. Each loop is an optimized version
of the more general one. This approach can be seen in the
code below.

local(int nFAP)
{
 switch (nFAP)
 {
 case 0: break;
 case 1: local_1(); break;
 case 2: local_2(); break;
 case 3: local_3(); break;
 ...
 default: local_n(nFAP);
 }
}

With this technique, an enormous reduction in cycle
count is obtained. This reduction will be discussed in a
following section. The major drawback of this approach is
the increase in code size. If there is not enough memory to
store all the needed versions, the most common numbers of
FAPs are the ones to be coded in an optimized way.

3.2 Memory management

We will now discuss those aspects dependent on the
different devices. The size and number of internal data
RAM blocks of the different devices can be seen in Table 2
(each memory block is divided in four memory banks for
concurrent access). As we can see, there is a great
difference between the different devices. We treat them
separately.

Table 2 Memory configurations

Program
Memory Size

Data
Memory

Size

Data Memory
Configuration

C6201 512Kb 512Kb 1 block
C6201B 512Kb 512Kb 2 blocks
C6202 2Mb 1Mb 2 blocks
C6203 3Mb 4Mb 2 blocks
C6211 32Kb +

512Kb
shared

32Kb +
512Kb
shared

2 level cache or
memory blocks

We make the assumption that external memory is able
to provide data at a burst rate of one memory access per
cycle for DMA transfers.

Data memory is used to store the data structures of the
model and the image data for calculations. The 3D model
data needed for the calculations should be stored in internal
memory to obtain the highest speed. The amount of
memory needed depends on the number of vertices,
triangles and FAPs of the model. For the model used in
our system, the amount of memory needed is less than
10KB.

The C6201, [12], has one internal memory block of
64Kbytes divided in four 16 bits wide banks. The size of
the images being processed will determine the memory

management algorithm. This is also true for the other
devices.

In case that we are working with QCIF images
(352x288, 25344 bytes), there is enough memory to store
both the texture image and the captured image in the
internal memory. Every time that an image is processed,
the next captured picture should be stored in internal
memory. This is done using a DMA transfer. During this
transfer, the CPU is stalled waiting for it to finish. A better
approach is loading half of the image and start processing
it when it is loaded. While the upper half is being
processed, the loading of the lower part can proceed.

The CPU and the DMA controller will collide
sometimes while accessing the internal memory, but by
setting the DMA´s priority to less than the CPU, it can be
guaranteed that no CPU time is lost. This is due to the fact
that the processing of the upper half image takes more time
than its transfer. This would be done in the first iteration.
For the next iterations, the captured image is already
loaded.

If the size of the image is bigger (e.g. CIF), this
approach cannot be used due to memory size limitations.
The solution involves a greater number of memory
transfers. First, the part of the image that has to be
processed is divided in smaller rectangular parts that cover
a set of triangles. To begin processing, the corresponding
parts of the texture buffer and the captured image buffer
containing a set of triangles have to be transferred to
internal memory.

Depending on the size of these rectangles, we can
choose among two different update possibilities. The first
one is to load the biggest possible blocks (of the texture
and the input image) by using all available memory. In
this case, when the processing of a block ends, the transfer
of the next block can begin. This approach has the
disadvantage of leaving the CPU idle during DMA
transfers.

If smaller blocks are chosen, the transfer of block n+1
can occur simultaneously with the processing of block n.
The sizes of the blocks have to be chosen in such a manner
that there is enough memory for two complete sets.

The major disadvantage of this approach comes from
the fact that as the size of the blocks decreases, so does the
efficiency of the memory transfers. The DMA controller
can only transfer rectangular blocks, and the processing is
done on triangles. If there is only one triangle per block,
the efficiency of the DMA transfers is less than 50%. That
is, for 100 pixels transferred, less than 50 are used in the
calculations. As we increase the size of the blocks, so does
the efficiency. This happens because we are now able to
pack the data in a better way inside the blocks. See Figure
5. This is the approach we chosefor our system.

Figure 5 Useful regions of a block

The main two differences between the C6201 and the
C6201B, [12], are: higher clock frequencies and a
separation of the memory in two different blocks that can
be accessed in parallel.

These differences do not offer any advantage apart from
permitting a greater number of iterations to be performed
in the same time interval (due to a faster clock). A change
in the memory transfer algorithm is not needed. The same
criteria of the C6201 to select the algorithm can be used.

The C6211, [13] and [14], is the low cost member of the
C62xx family. The main difference with the C6201 is a
slower clock and a different memory organization. The
slower clock rate will directly affect the performance of the
system. Its internal memory organization is the source for
the change to the memory management algorithm.

The C6211 has 64KB of memory that can be configured
as data memory or level 2 cache, [15]. For our system, this
internal memory is configured as 32KB, 2 way associative
L2 cache and two 16KB data memory blocks. The two
memory blocks can be used in the same manner that the
data memory of the C6201/C6201B was used.

There is no need to store the 3D model data in internal
memory. This data can be accessed through the L2 cache,
providing a high hit rate. This provides a source of
simplification in the algorithm, and permits the use of
more complex data structures. The simplification would
only affect the outer loops of the algorithm. The main
kernel would remain unmodified.

Software pre-fetching could be used to reduce the
amount of data transferred, but the C62x hardware does
not support it.

With the C6202, [16] and [17], the selection of
algorithms is easier. Due to its increased memory, it is
possible to store all the data needed if we work with QCIF
images. If the image being used is CIF, the rectangular
blocks used can be bigger. The same technique used for
the C6201 can be used, but in this case, the memory
transfers are more efficient. We can now have two big
complete sets of data to be processed.

The C6203, [18] and [19], has 512KB of internal data
RAM. This is enough memory to store several copies of

the images in it, even if the image size is CIF.
Additionally, the high clock frequency of this device,
makes it specially suited for the implementation of this
algorithm.

Table 3 indicates the memory algorithm choice based on
image size and C62xx device. The members with larger
internal memories use the algorithms with less external
memory bandwidth, as expected. Store all means that all
the image buffers needed are stored in internal memory;
small blocks means that two small block buffers are used
to store data; and big blocks means that bigger blocks can
be used in the previous approach.

Table 3 Algorithm selection

QCIF CIF
C6201/C6201B Store all Small blocks
C6211 Small blocks Small blocks
C6202 Store all Big blocks
C6203 Store all Store all

4 Results

At this moment, just the main motion estimation kernels
have been coded in assembly language. The rest of the
program is written in C.

The global motion estimation kernel has been written in
partitioned serial assembly, [20]. After being optimized by
the assembly optimizer [10], we obtain a software-
pipelined loop of 26 cycles with two iterations in parallel.
With 110 instructions in the loop, this gives over 4
instructions per cycle. This is far less than the ideal limit
of 8.

The number of cycles for this algorithm is limited by the
number of general purpose registers. Ideally, all the
coefficients of the HTH and HTY matrices should be stored
in internal registers. With this, the loop could be executed
in around 16 cycles. This would lead to more than 20 live
registers, close to the 32 register limit of the C62xx core.
If we add other live registers, such as pointers to needed
structures, we soon reach the register limit. To solve this,
some coefficients of the matrices are stored in memory.
This changes the lower bound of the algorithm to 24, due
to memory accesses.

Two ways to improve performance of this algorithm by
making modifications to the architecture would be
increasing the number of general purpose registers, and
including a load double word instruction similar to the C67
lddw instruction, [10]. The increase in available registers
would improve software pipelining by allowing more
stages to proceed in parallel. The lddw would produce a
reduction in the usage of the D units.

If these two modifications were done, the main limit to
the processing speed, would be the number of multipliers
available. The algorithm used is mainly composed of

MAC operations that would greatly benefit from more
multipliers.

In a similar manner, the local motion estimation has
been written using partitioned serial assembly. As
mentioned in the section before, a general version was
coded and then specialized versions with a fixed number of
FAPs were written.

The general version has one parameter that specifies the
number of FAPs to be used. This version is composed of
several nested loops, one outer loop that processes all the
pixels in one line, and three inner loops that calculate the
variable number of coefficients of a pixel. The main
problems present here are the nesting of the loops and the
unknown number of FAPs at compile time. This leads to
quite inefficient code, as can be seen in Table 4. The
number of cycles has been obtained by optimized serial
assembly. By hand coding, a number of cycles four times
lower is expected.

The optimized versions with fixed number of
parameters have smaller number of cycles. This is
possible because the two nested loops are converted into
only one loop by completely unrolling the inner one.
Software pipelining further improves performance. The
cycle count for the different versions can be seen on Table
4. This cycle count has been obtained from optimized
partitioned serial assembly.

Table 4 Local estimation cycles

FAPs Generic Code Optimized Code
1 94 4
2 122 10
3 154 20

Simulations are to be done to obtain performance
figures with different memory algorithms and C6X
devices.

Even though we do not have exact figures for a
complete system, we can make some calculations on an
upper bound on the expected performance. Assuming that
25% of the pixels in the image are to be processed, and that
each pixel being processed takes 26(global
movement)+50(local movement) cycles, this would give,
for a QCIF image:

176x144x(26+50)x0.25=481,536 cycles
For a 200MHz device, this would mean that we could

iterate more than 400 times per second. If our target frame
rate was 10 frames per second, we would be able to iterate
40 times per frame, more than enough to correctly
calculate the movement. This figure would be a peak rate.
A more reasonable figure, to account for other processing,
would be dividing it by 4, which still is enough for real
time.

5 Conclusions

In this paper we have described a facial motion
estimation algorithm. This algorithm is able to calculate
global and local motion of the face. The implementation
on the C62xx family has been discussed. Initial results on
the assembly coding of the main kernels have been
presented. Then, different memory management
algorithms for the problem at hand have also been
proposed. A decision on the best algorithm for each device
has been proposed. Though there are no results to contrast
this intuitive assignment, it is believed that they will
perform as expected. Simple calculations have shown that
real time performance could be achieved with a 200MHz
device. Among all the C62xx devices, the greatest
performance is expected from the C6203, which, due to its
increased clock frequency and internal memory size, is not
a surprise. This implementation could be the starting point
for a complete MPEG-4 facial animation encoder for the
C62x platform.

Acknowledgements

The authors wish to thank M. Ho, J.A. Muñoz and S.
Alexandres. Without them all, this document would not
have been possible. Part of this project has been carried
out under the TI Elite University Program. R. Lauwereins
is a senior research associate of the Flemish FWO.

References

[1] ISO/IEC 11172, Coding of Moving Pictures and Associated
Audio for Digital Storage Media at up to About 1.5 Mbit/s.

[2] ISO/IEC 13818, Generic Coding of Moving Pictures and
Associated Audio.

[3] ITU-T SG 15 WP 15/1, “Draft Recommendation H.263
(Video coding for low bitrate communication),” Doc. LBC-
95-251, October 1995.

[4] MPEG Video and SNHC, "Text of ISO/IEC FDIS 14496-2:
Visual," Doc. ISO/MPEG N2502, Atlantic City MPEG
Meeting, Oct. 1998.

[5] ISO/IEC 14496-2 Coding of audio-visual objects Part 2:
Visual

[6] Koch, R. “Dynamic 3-D Scene Analysis through Synthesis
Feedback Control”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 15, No. 6, pp. 556-568, June
1993.

[7] C. S. Choi, K. Aizawa, H. Harashima, and T. Takabe,
“Analysis and Synthesis of Facial Image Sequences in
Model-Based Image Coding”, IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 4, No. 3,
pp. 257-275, June 1994.

[8] H.Li, and R.Forchheimer, “Two-View Facial Movement
Estimation”, IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 4, No. 3, pp. 276-287, June 1994.

[9] H. Li, and P. Rovainen, “3-D Motion Estimation in Model-
Based Facial Image Coding”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 15, No. 6, pp. 545-
555, June 1993.

[10] “TMS320C6000 CPU and Instruction Set Reference Guide”,
Texas Instruments SPRU189D, March 1999.

[11] “TMS320C6000 Optimizing C Compiler User's Guide”,
Texas Instruments SPRU187E, February 1999.

[12] “TMS320C6201/TMS320C6201B Datasheet”, Texas
Instruments Datasheet SPRS051E., May 1999

[13] “TMS320C6211 Datasheet”, Texas Instruments Datasheet
SPRS073A, March 1999.

[14] “How to Begin Development Today with the
TMS320C6211 DSP”, Texas Instruments application report
SPRA474, September 1998.

[15] “TMS320C6211 Cache Analysis”, Texas Instruments
application report SPRA472, September 1998.

[16] “TMS320C6202 Datasheet”, Texas Instruments Datasheet
SPRS072A, January 1999.

[17] “How to Begin Development Today with the
TMS320C6202 DSP”, Texas Instruments application report
SPRA473, September 1998.

[18] “TMS320C6203 Datasheet”, Texas Instruments Datasheet
SPRS086A, May 1999.

[19] “How to Begin Development Today with the
TMS320C6203 DSP”, Texas Instruments application report
SPRA570, May 1999.

[20] “TMS320C62x/C67x Programmer's Guide”, Texas
Instruments SPRU198C, May 1999.

