
1

“Software optimisation techniques for real-time applied adaptive filtering using
the TMS320C6201 Digital Signal Processor”

 N. Dahnoun, M. Hart and F. Umbarila, University of Bristol

ABSTRACT

Adaptive filtering is now an integral part of most modern
communication systems where it is involved with both
channel equalisation and estimation techniques.

In these systems, filters are generally fed with a short
training sequence to which they have to adapt prior to
receiving data. This training sequence is often
multiplexed with the data, reducing the amount of data
transmitted in each frame.

To maximise the efficiency of a system, training
sequences need to be as short as possible requiring that
adaptation occurs in as few iterations as possible. Also
as bit rates of communication systems increase, the time
available to complete one iteration decreases. All of
these factors place increasing demands on implemented
algorithms, requiring fast digital signal processors with
highly efficient optimised software.

In this paper, optimisation techniques for real-time
adaptive algorithms based on Wiener and Kalman filter
theory were developed. Two algorithms in particular
were implemented on the TMS320C6201 evaluation
module, these being the Least Mean Squares and
Recursive Least Squares. Benchmarking of the
algorithms was performed allowing the evaluation of the
maximum bit rate that can be supported in various
situations. The two algorithms were also compared in
other areas such as code size, ease of implementation,
stability, reliability and data memory required for
implementation.

1 INTRODUCTION

Conventional filters are used in a variety of applications
where the specifications required and the system into
which it will be employed are known prior to the design
of the filter.

To enable filters to be used in applications where their
specifications are required to change with the nature of
the application and time, an adaptation mechanism is
required.

This mechanism needs to be defined in some way so that
it adjusts the filter coefficients in an attempt to meet
some criteria. In most applications this criteria is the
minimisation of some form of error based on the success

in the adjustment of the filter specifications to that
required by the application.

There are many situations that require the use of
adaptive filters and these include channel equalisation
and estimation, speech processing, echo and noise
cancellation, control systems and medical imaging and
instrumentation.

There are also several algorithms available for
performing the adaptation process. However, they
generally fall into one of two categories, these being
either Least Mean Squares (LMS) or Recursive Least
Squares (RLS). There are also variants of these that are
improved versions for more specific applications.

In this paper these two algorithms are defined and then
implemented on the Texas Instruments most powerful
fixed-point digital signal processor, the TMS320C62x.
The software used to implement these algorithms is then
optimised followed by benchmarking and testing of the
algorithms both quantitatively and qualitatively.

2 BACKGROUND THEORY

Adaptive Filtering

The objective of the adaptive mechanism within the
filter is to minimise the error in estimating the desired
signal.

d[n]

x[n]

y[n]

e[n]+

-

Adaptive
Filter

Figure 1 – Basic Adaptive Filter Structure

The output of such a filter and the estimation error is:

XH T=y yde −=

Where H is the vector containing the tap coefficients and
X is the vector containing the tap inputs.

The aim of the two adaptive algorithms implemented in
this report is to adjust H such that the error is minimised
in some way. The method used to minimise the error in
both cases is highlighted first in a post processing

2

environment where all the data is gathered prior to
optimisation of the filter coefficients.

These methods are then used to derive the two recursive
algorithms implemented.

Minimum Mean Square Error (MMSE)

The idea of the LMS algorithm is to minimise the Mean-
Square Error (MSE) resulting from the estimation of the
desired response. The cost function, J, is therefore [5]:

()[]2neEJ = (1)

Where E is the expectation. It can be shown that the
optimal solution for the tap coefficients in the MMSE
sense is [5]:

PRH = (2)

Where R and P are respectively the auto- and cross-
correlation matrices. A recursive method for optimally
solving Equation 2 is presented in the form of the LMS
Algorithm.

The LMS algorithm is based on the method of steepest
descent. The basic aim is to minimise the MSE by
adjusting the tap weights based on the gradient of the
error surface, an example of which is shown in Figure 2.
(This also shows why FIR filters are always used so that
there is only one well-defined minima.)

FIR Filter IIR Filter

Error Error

Tap Weight

Local Minima

Tap Weight

Figure 2 - Error Surface of a FIR and an IIR Adaptive Filter

The tap weights are therefore updated recursively using
the following equation:

∇µ−= HH (3)

(Where µ is a constant that controls the rate and stability
of convergence).

The steepest descent algorithm requires prior knowledge
of both the auto- and cross-correlation matrix, R and P,
which is not available in a real time adapting situation.
The LMS overcomes this by using instantaneous
estimates based on the currently available data. This
difference is highlighted in Equation 4 which shows the
different gradient calculations.

X

HXXX

RHP
T

e2

LMS 22

DescentSteepest 22

−=
+−=
+−=

∇
∇

(4)

Least Squares Error (LSE)

The idea of Least Squares (LS) filtering is to minimise
the sum of all the estimation error squares, with the
following cost function [5]:

()∑
=

=
N

Mi

ieJ 2 (5)

It can be shown that the optimal solution for the tap
coefficients in the LSE sense is [5]:

PRH = (6)

Although we are effectively trying to solve the same
equation as for the MMSE case, we are using two
different methods. In the LSE method the definitions are
based on time summations, whereas for the MMSE case
they were based on expectations.

The Recursive Least Squares (RLS) algorithm computes
updated estimates of the tap weight vector based on the
least-square error and is a special case of a Kalman filter.
The RLS algorithm exploits the matrix inversion lemma
to overcome the need to compute lengthy matrix
inversions required to update tap weight vector.

First consider the update equation for the auto-
correlation matrix:

T
nn1nn XXRR += − (7)

A recursion for the inverse of the auto-correlation can
now be derived by using Equation 7 and the matrix
inversion lemma, as given below:

() BCBCCDBCBA HH1 1−− +−= (8)

Where: nRA = , 1
1

−
−= nRB , nXC = and 1=D .

Using the recursive form for auto-correlation matrix, a
similar recursion for the cross-correlation matrix and
Equation 6, the update equation for the tap weights can
be shown to be [5]:

enn XRHH 1
1

−
− += (9)

Summary of Recursive Adaptive Algorithms

Table 1 summarises the LMS and RLS in terms of the
equations required and the initialisation conditions
required. It also shows the equations required for a
complex version of the LMS.

3

Update
Equation

 1 neXHH nn µ+= −

Error [] [] [] nyndne −=
Output [] n

T
n XH=ny

Initialisation 0=TH

Table 1a– Summary of the LMS Algorithm

Update
Equations

() () () 1 QQIIII eenn XXHH ++−= µ
() () () 1 IQQIQQ eenn XXHH −+−= µ

QHHH jI +=
Error [] [] []

[] []() [] []() j nyndnynd

njenene

QQII

QI

−+−=
+=

Output [] XH H=ny

QXXX jI +=
Initialisation 0=HH

Table 1b– Summary of the Complex LMS Algorithm

Coefficient
Update
Equation

() () () () () 1 1 nennnn XRHH XX
−+−=

Inverse Matrix
Update
Equation

() () () () () ()
() () ()nnn

nnnn
nn

XRX
RXXR

RR
1

XX
T

1
XX

T1
XX1

XX
1

XX 11

11
1

−+
−−

−−=
−

−−
−−

Error [] [] [] nyndne −=
Output [] n

T
n XH=ny

Initialisation
(I is the identity
matrix, δ is a
small constant.)

0=TH

IR
δ
1=

Table 1c – Summary of the RLS Algorithm

3 SOFTWARE OPTIMISATION TECHNIQUES

The software tools supplied with the TMS320C62x
allow code to be written in three different formats, C,
linear assembly and assembly. Texas Instruments quote
that the optimising C compiler is about 80% efficient
compared to hand optimised assembly [1] and linear
assembly is 95-100% efficient.

However, writing code directly in assembly is often
difficult and time consuming. Hence the following
optimisation procedure is recommended [1][2][3][4][11]
and was followed in the development in this paper.

Optimise
Algorithm

Program in 'C '
and compile
without any
optimisa tion

Code
Functioning

?

Make the
necessary

correction(s)

Profile Code

Resu lt
Satisfacto ry

?

Use intrinsics

Profile Code

Resu lt
Satisfacto ry

?

Set n=0 (-O n)

Compile code
with

-On option

Code
Functioning

?

Make the
necessary

correction(s)

Profile Code

Resu lt
Satisfacto ry

?

N<=3?

N

N

N

Y

N

Y

N

No further
op timisa tion
is requ ired

Y

No further
op timisa tion
is requ ired

Y

Pass to next
step o f

op timisa ion
(N=N+1)

N

No further
op timisa tion
is requ ired

Identify Code
Functions to be

further op timised
from Pro filing

Resu lt

Convert code
need ing

optimisa tion to
linear assembly

Code
Functioning

?

Make the
necessary

correction(s)

Resu lt
Satisfacto ry

?

No further
op timisa tion
is requ ired

W rite code in
hand assembly

Y

N

Y

N

Y

Y

Figure 3 – Software Optimisation Procedure [1]

Prior to writing the initial C code, the algorithms were
implemented in MATLAB to initially check they
functioned correctly. They were then implemented in C
for execution on a PC and again tested. Following this
the necessary alterations were made for implementation
in a fixed-point format.

One of the advantages of writing code in C is that the
code is portable, however, the major disadvantage is that
the code may be severely inefficient. If the portability is
discarded and the C code written with some knowledge

4

of the processor in mind, then improvements can be
made. Intrinsics can also be used to improve C code.

To summarise, the overall procedure for developing a
highly optimised algorithm was adopted:

[1] MATLAB
[2] C for PC
[3] C using fixed point arithmetic (include intrinsics)
[4] Linear Assembly
[5] Assembly (Un-pipelined)
[6] Assembly (Pipelined)

4 IMPLEMENTATION AND OPTIMISATION

To allow implementation of the algorithms developed in
C, the matrix-based equations were converted into
normal equations.

() () ()∑
−

=

−=
1

0

N

k

knxkhny (10)

LMS Equations:

() () () 1,,2,1,0 ,1 −=−+= − Nkknexkhkh nn �µ (11)

RLS Equations:

() ()
() () () ()

() () ()∑ ∑

∑ ∑

= =

=

−

=

−

−−














 −+





 −





 −

−−=
N

i

N

j
jjii

N

j
mj

N

i
iilj

mlml

nxnRnx

nRnxnRnx

nRnR

1 1
,

1

1
,

1

1
,

1
,

1
,

11

11

1

(12)

() () () ()∑
=

−+−=
N

i
iikkk nxnRenHnH

1

1
,1 (13)

The flow charts shown in Figure 4 were then used to
outline the required logical flow of both algorithms [8].

The two algorithms were implemented within an
interrupt function so that whenever a new value was
sampled by the CODEC the function was called so that
the tap weights could be updated and the filtering be
performed. All the filters implemented comprised of
eight taps.

Initialise elements
of H and X to zero

Get New Value of X
and d(n)

Filter X

Calculate Error

Calculate µe

Update Tap
Coefficients

Shift elements of X
in time, discarding

oldest element

LMS Algorithm

Initialise elements
of H and X

Get New Value of X
and d(n)

Filter X

Calculate Error

Update inverse of
Auto-Correlation

Matrix

Update Tap
Coefficients

Shift elements of X
in time, discarding

oldest element

RLS Algorithm

Figure 4 – LMS and RLS Algorithm Flow-Charts

The procedures for optimising the code highlighted
earlier were followed, and benchmarking performed at
each stage. The result of this benchmarking is
summarised in Table 2, followed by an evaluation of the
efficiency of the C compiler in Table 3.

Optimisation
Level

LMS Complex
LMS

RLS

C 1020 - 44035
C+o3 196 - 7947
C+intrinsics 979 2261 38417
C+intrinsics+o3 197 495 10149
Linear Assm 302 - 24732
Linear Assm +
Pipelining

76 - 12626

Assembly 42 - -
Fully Optimised
Assembly

16 - -

Table 2 – Benchmarking for one Iteration of each Eight Tap
Algorithm

Efficiency of C Compiler
Comparison LMS RLS
Linear Assm +
Pipeling

39% 159%

Assembly 21% -
Fully Optimised
Assembly

8% -

Table 3 – Evaluation of the Efficiency of the Optimising C
Compiler

5

5 TESTING OF THE IMPLEMENTED
ALGORITHMS

A simple set-up where the desired signal was also the
input to the filter was used. The implemented
algorithms were tested with a variety of input and
initialisation conditions. Figure 5(a) and (b) shows the
LMS and RLS algorithms adapting and Figure 5(c)
shows the output from the complex LMS adaptive filter
in the form of an I-Q adapting constellation diagram.
Note that the testing environments were effectively
noise-free.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

E
rr

or
 (

%
 o

f d
es

ire
d

si
gn

al
)

Figure 5(a) – Estimation Error as a Function of Iteration number
for the LMS Algorithm

0

10

20

30

40

50

60

70

80

90

100

110

120

0 50 100 150 200 250 300 350 400 450 500

Iteration

E
rr

or
 (

%
 o

f d
es

ire
d

si
gn

al
)

Figure 5(b) – Estimation Error as a Function of Iteration number
for the RLS Algorithm

-100

-80

-60

-40

-20

0

20

40

60

80

100

-100 -50 0 50 100

In Phase Component (% of desired signal)

Q
ua

dr
at

ur
e

P
ha

se
 C

om
po

ne
nt

(%
 o

f d
es

ire
d

si
gn

al
)

Figure 5(c) – Adapting constellation diagram for the Complex
LMS Adaptive Filter

6 COMPARISON OF IMPLEMENTED LMS
AND RLS ALGORITHMS

Besides the usual comparison made in various adaptive
signal processing books [5][6][11][15], the results found
allow the LMS and RLS algorithms to be compared in
terms of speed, total time to converge and code size.
(Based on a clock speed of 200MHz)

Algorithm and
Implementation

Max
Sample

Rate

Total
Time to

Converge

Code
Size

(bytes)

Data
Mem.
(bytes)

LMS (C) 1.02MHz 980µs 1120 36
LMS
Linear Assembly

2.63MHz 380µs 192 70

LMS Optimised
Assembly

12.5MHz 80µs 288 0*

RLS (C) 25.2kHz 1192µs 2720 164
RLS
Linear Assembly

15.8kHz 1894µs 864 324

*Only registers were used and these were not saved or restored in
between interrupts as the processor was idle.

Table 4 – Quantitative Comparison of the LMS and RLS
Algorithms

The total time to converge is effectively the amount of
processing time that is required to achieve a pre-defined
error level. The values given in Table 4 are based on the
algorithms working at the maximum possible sampling
rate and the LMS taking 1000 cycles to converge and the
RLS 30, both of which are typical values in moderate
noise conditions [10].

In the linear assembly implementations the required data
memory was larger as integers were used instead of
shorts for X and H (and R in the RLS) to reduce the
number of shift instructions required in fixed point
arithmetic.

A comparison of the level of optimisation achieved
showed that the LMS was highly optimised by following
the procedures outline in Section 3. However, the
procedures did not increase the optimisation of the RLS
in terms of cycles required to complete one iteration.

To achieve higher optimisation for the RLS, the linear
assembly code would have to be rewritten with a more
intricate pre-planning.

The investigations also indicate that for the case of the
LMS, the optimising C compiler was only 8% efficient
compared to hand optimised assembly.

7 CONCLUSION

The results presented in this paper give an insight into
some of the implementation factors that need to be
considered when using the TMS320C62x.

6

Although the actual processing time to converge for both
of the algorithms implemented in C is very similar, in
general, the RLS algorithm is preferred as it is more
reliable with change in the noise environment, although
it can suffer ‘blow up’ due to several factors. The RLS
algorithm also requires less iterations to converge hence
allowing shorter training sequences than that required for
the LMS.

The LMS does have the advantage that it will always be
able to complete one iteration faster than the RLS, as
shown. Hence in high bit rate systems it may be the only
algorithm that can be used. It has also proved to be
much simpler to implement, requiring less CPU
resources, program and data memory than the RLS
algorithm.

However, the LMS algorithm presented has been
implemented in a highly optimised form, whereas there
is still scope for optimising the RLS further and it is
therefore possible that the implemented RLS could
possibly out perform the LMS in terms of time to
converge.

REFERENCES

[1] Dahnoun, N., “DSP Implementation using the
TMS320C62x Processors”, Addison Wesley, to be
published late 1999.

[2] Dahnoun, N., Tong, H.K., “Software Optimisation
for Modems using TMS320C62xx Digital Signal
Processor (DSP)”, 9th International Conference on
Signal Processing Applications and Technology
(ICSPAT), Toronto 1998.

[3] Dahnoun, N., Tong, H.K., “Implementation of JPEG
Image Coding standard on the TMS320C62xx”,
Texas Instrument’s Second European DSP
Education and Research Conference. ESIEE Paris
September 1998.

[4] Dahnoun, N., Tong, H.K., “Viterbi Decoder Design
and Implementation using TMS320C62xx Digital
Signal Processor (DSP)”, Texas Instrument’s
Second European DSP Education and Research
Conference. ESIEE Paris September 1998.

[5] Haykin, S., “Adaptive Filter Theory”, Prentice-Hall,
1991.

[6] Haykin, S., “Adaptive Signal Processing”, Prentice-
Hall, 1986.

[7] Haykin, S., “Communication Systems”, Wiley, 3rd

Edition, 1994.

[8] Ifeachor, E., Jervis, B., “Digital Signal Processing:
A Practical Approach”, Addison Wesley, 1998.

[9] McClellan, J.H., Schafer, R.W., Yoder, M.A., “DSP
First – A Multimedia Approach”, Prentice-Hall,
1998.

[10]Mulgrew, B., Grant, G., Thompson, J., “Digital
Signal Processing: Concepts and Applications”,
Macmillian Press Ltd., 1999.

[11]Texas Instruments, “TMS320C62x/C67x
Programmers Guide”, Texas Instruments
(SPRU198B), 1998.

[12]Texas Instruments, “TMS320C62x/C67x CPU and
Instruction Set”, Texas Instruments (SPRU189C),
1998.

[13]Texas Instruments, “TMS320C6x Evaluation
Module”, Texas Instruments (SPRU269), 1998.

[14]Texas Instruments, “TMS320C6x Optimizing C
Compiler”, Texas Instruments (SPRU187C), 1998.

[15]Widrow, B., “Adaptive Signal Processing”,
Prentice-Hall, 1985.

[16]Widrow, B., McCool, J., Ball, M., “The Complex
LMS Algorithm”, Proceedings of the IEEE, pp719-
720, 1975.

ACKNOWLEDGEMENTS

The authors would like to thank Robert Owen, Hans
Peter Blaettel, Neville Bulsara, Greg Peake and Maria
Ho of Texas Instruments for their continuous help and
support.

M. Hart would also like to thank everyone concerned at
Fujitsu Telecom R&D Centre, especially Sunil
Vadgama, for sponsoring his MSc at the University of
Bristol.

