
Implementation of Channel Estimation and Multiuser Detection

Algorithms for W-CDMA on Digital Signal Processors

Sridhar Rajagopal, Gang Xu and Joseph R. Cavallaro

Center for Multimedia Communication

Department of Electrical and Computer Engineering

Rice University, Houston, TX 77251-1892.

fsridhar,gxu,cavallarg@rice.edu

ABSTRACT

Proposed algorithms for Third Generation W-CDMA communication systems have extremely high performance re-
quirements. In this paper, we study the implementation issues involved for one of the proposed multiuser channel
estimation and detection algorithms for base-stations in the uplink using TI's TMS320C6x DSP Evaluation Mod-
ules(EVM). It was found that these proposed algorithms for multiuser channel estimation and detection have di�erent
processing and precision requirements. While the detector can be implemented using the C6201 16-bit �xed point
DSP, the proposed channel estimation algorithm may be more suitable for a
oating point implementation using the
C6701
oating point DSP. We study the e�ects of the specialized approximate instructions available on the C6701
DSP on channel estimation. Then, the advantage of multistep optimizations and use of assembly code is studied for
both the algorithms. Memory issues involved in the implementation of these algorithms is also investigated. It was
found that the data memory requirements for channel estimation for the chosen system parameters necessitates the
use of external memory while the multistage detection algorithm could be placed in the available internal data mem-
ory. We �nally discuss the current and future trends of DSPs and their utilization for such wireless communication
applications.

1. INTRODUCTION

Wideband Direct-Sequence Code Division Multiple Access (W-CDMA) is the emerging protocol1 for the next gen-
eration (3G) wireless communication systems. W-CDMA has been designed to add features such as multimedia
capabilities, high data rates and multi-rate services to the existing wireless communication framework. The data
rates proposed2,3 are 2Mbps indoor, 384 Kbps pedestrian, and 144 Kbps vehicular. Several standards for third
generation systems have been proposed and developed by di�erent industrial committees in countries such as the
U.S, Europe and Japan. All these standards have accepted CDMA in one form or another as the multiple access
method for wireless communications.

One of the main bottlenecks in the base station receiver, both in terms of accuracy and speed, is the estimation
and detection of the transmitted data from the received signal. Channel parameter estimation4 is essential for �nding
the delays and fading amplitudes in the system. This information is fed to the multiuser detector and Rake receivers
to detect the incoming data accurately. Channel estimation and detection processing5 can done both on the mobile
handset and the base station using DSPs or DSP cores with specialized blocks integrated with RF circuitry. Before
the proposed advanced algorithms for W-CDMA can be integrated with the next-generation CDMA technology, they
need to be tested and prototyped on such DSP processors to evaluate their performance. This is the main goal for our
performance evaluation of multiuser channel estimation and detection algorithms on DSPs. The proposed channel
estimation and detection algorithms have stringent time, power and size constraints and they put increased pressure
on the existing resources and the available processor technology. As our analysis shows, the current trend in DSPs
are showing encouraging signs in meeting the real-time requirements of these algorithms.

The organization of this paper is as follows. In section 2, we introduce the multiuser channel estimation and
detection algorithms. In section 3, we describe the simulation methodology used for our performance evaluation.
We also discuss the hardware used in our simulations. In section 4, we present the results obtained for both the
algorithms on DSPs and their analysis. In section 5, we discuss the real-time requirements for channel estimation
and detection for W-CDMA. We also discuss current and future trends in DSPs and their suitability for such wireless
communication applications. We �nally conclude our paper in section 6.

1

Demodulator

Channel
Estimator

Multiuser
Detector

Demux

Mobile 1

Mobile 2

Delay 1i

Delay 2i

Antenna

Decoder

Multiple
Users

Multipath
Delays

Base-Station Receiver

Data

Pilot

Estimated
Amplitudes
& Delays

Noise

Figure 1. Simpli�ed view of the Base Station Receiver for the Uplink

2. CHANNEL ESTIMATION AND DETECTION IN THE BASE STATION

The main blocks in a base station receiver are as shown in Figure 1. The channel is the wireless interface between
the mobile user and the base station. Many undesirable e�ects such as interference from other users, delays from
multiple paths, fading and noise occur on the signal as it passes through the channel. The detector needs to acquire
synchronization with the input signal in order to correctly detect the incoming bit sequence. Hence the parameters
of the channel need to be estimated for proper detection. Channel estimation involves estimating and tracking the
delays of each users' bits and the channel attenuation over the di�erent paths. One of the proposed methods for
channel estimation is using the Maximum Likelihood method. There has been ongoing related research at Rice using
the Maximum Likelihood algorithm for channel estimation.6 This algorithm is designed to handle time variations
in the system, multiple propagation paths, and large number of users with varying level of transmitting power.

In the uplink, since all users are transmitting information, each desired user experiences direct interference from
other users (Multiple Access Interference or MAI). Also, signals from users near the base station tend to be stronger
and overshadow the signals from users far away from the base station (near-far e�ect). The optimal multiuser detector
was �rst proposed by Verd�u,7 but several sub-optimal schemes have been proposed to reduce the complexity of the
algorithm. One of the most e�ective sub-optimal schemes, based on the principle of Parallel Interference Cancellation
(PIC), was �rst proposed by Varanasi and Aazhang8 at Rice. This scheme was the iterative multistage method where
the inputs of one particular stage are the estimated bits of the previous stage. After interference cancellation, the
new estimates, which should be closer to the transmitted bits, are output and fed into the next stage. Ideally at the
last iteration stage, the output and the input should be identical if the algorithm converges. Further optimizations
have been made on the algorithm, making use of the fact that as the iterations progress, the solution becomes more
and more invariant, i.e. more and more elements in the output vector turn out to be the same as the elements in the
input vector. The proposed detection algorithm is the Di�erencing Multistage algorithm,9 which is based on the
above principle.

2.1. System Model

Our proposed scheme for the uplink channel estimation makes use of a pilot or preamble (a sequence of bits known at
the receiver), which is time-multiplexed with the data. As the signal passes through the channel, the channel causes
changes in the preamble. By comparing the received bits with the known preamble, the channel parameters (delays
and amplitudes) can be extracted from the signal. The channel parameters are assumed to remain static until the end
of the frame. These estimates are then passed to the di�erencing multistage detector. The multistage detector does
the interference cancellation stage by stage until the algorithm converges. The algorithms discussed here essentially
consider multipath and multiuser e�ects but assume a static or a slow fading channel (for the duration of the frame)
and a single sensor at the receiver. We also assume a short repeating spreading sequence system for our algorithms.

2.2. Maximum Likelihood Based Channel Estimation

The channel parameters have to be extracted from the information contained in the received pilot signal. Since the
observation vector ri depends on the channel whose a priori statistics are unknown, a maximum likelihood estimate
of the channel is often used. In our problem, ri is a function of the channel vectors zk, the noise covariance matrixK,
which is assumed unknown and the transmitted bits bi. We assume that the bits bi are known. This is accomplished

2

in the acquisition phase by requiring that all users transmit training pilot sequences. The following steps occur in
the maximum likelihood method :

Rrr =
1

L

LX

i=1

rir
H
i

Rbr =
1

L

LX

i=1

bir
H
i

Rbb =
1

L

LX

i=1

bib
H
i

Y = RbrR
�1
bb

K = Rrr �YRH
br

zHk = (yH2k�1K
�1UR

k + yH2kK
�1UL

k) � (U
R0

k K�1UR
k +UL0

k K
�1UL

k)
�1

where Rrr is the autocorrelation of the observation vector, Rbr the cross- correlation between the observation vector
and the preamble bits, Rbb the autocorrelation of the preamble bits, K the noise covariance matrix, Y the estimate
of UZ, U the matrix of codes and Z the channel impulse response matrix.

A least squares �t of zk is performed to extract the strongest P paths. For each pair of adjacent coe�cients of
zk, we obtain local values of amplitudes and delays, from the following optimization,

[wq ;
q] = argmin jjzk;q � (1�
)wjj2 + jjzk;q+1 �
wjj2:

We then search for the global maxima to obtain the strongest path :

q = argmax jwq j; � = (q +
q)Tc; w = wq :

where
 is the fractional part of the delay, q is the integer part of the delay, � is the estimated delay and w is the
estimated amplitude. The estimated path is subtracted from zk and the process is repeated to �nd the next strongest
path, until a speci�ed number of paths have been identi�ed.

2.3. Di�erencing Multistage Detection Algorithm

A Matched Filter Bank is usually the �rst stage in the baseband signal detection. Most of the multiuser detection
techniques use the output of the matched �lter bank and the cross-correlation information of all users in the system.
The technique of the matched �lter bank is to use one matched �lter per user. The data bits are passed through the
matched �lter bank to detect each user's signal. The matched output is then sent through the multiuser detector
where the parallel interference cancellation is done. The matched �lter output is given by

y = RAd+ �

where y and d are the output of the matched �lter bank and the transmitted user data bits, R is the cross correlation
matrix of the synchronized spreading codes and A is a diagonal matrix containing the amplitudes of the users. The
cross correlation matrix R can be split into three parts, i.e.

R = D+ S+ ST

B = (S+ ST)A

where D = diag(R) = I and S is the lower triangular part of matrix R. B is used later in the explanation of the
algorithm for notational convenience.

After M iterations, it is likely that d̂(l) = d̂(l�1), which re
ects the convergence of the algorithm. So instead of
dealing with each estimated bit vector d̂(l), we calculate the di�erence of the bits in two consecutive stages, i.e. the
input of each stage becomes x̂(l) = d̂(l)� d̂(l�1)(j = 1; 2; : : : ;K), where x̂ is called the di�erencing vector. Signi�cant
savings in computations can be acheived as more and more elements in the vector x̂(l) tend to be zero after several
iterations. Moreover, all the non-zero terms of x̂(l) equal to +2 or �2. This type of constant multiplication can

3

be implemented by arithmetic shifts, which will eliminate all multiplication operations. Further, the bit error rate
(BER) in the system is not a�ected. The main steps in the algorithm9 are as shown below:

d̂(0) = sign(y)

for k = 1 to NK

z
(1)
k = yk �

Pj=NK

j=1 Bij d̂j
(0)

end

d̂(1) = sign(z(1))

for l = 1 to M

x̂(l) = d̂(l) � d̂(l�1)

for k = 1 to NK

z
(l+1)
k = z

(l)
k �
Pj=NK

j=1 Bij x̂
(l)
j

end

d̂(l+1) = sign(z(l+1))

end

3. IMPLEMENTATION METHODOLOGY

We initially looked at a �xed point implementation for both the algorithms. However, the matrix inversions using the
LU decomposition method along with squareroots and divisions in the proposed channel estimation algorithm made
a �xed point implementation di�cult. Hence, we decided to investigate a prototype
oating point implementation
for this algorithm and evaluate the use of the specialized single-cycle approximate instructions (Table 2) for this
purpose in the C6701 DSP. We also investigated the wordlength issues for multistage detection9 and found that the
multistage algorithm can be suitably implemented using �xed point arithmetic. We study the performance of the
channel estimation algorithm on the
oating point TI TMS320C6701 EVM and that of the multistage detector on
the �xed point TI TMS320C6201 EVM. Both the EVM boards have DSPs with 64 KB each of internal program and
data memory, 256 KB of external SBSRAM (Synchronous Burst Static RAM) and 8 MB of external DRAM.

We use the TI Code Generation tools version 3.0 for the compiler and TI Code Composer Studio version 4.01 for
pro�ling the code performance on the DSP. The execution time is calculated by setting pro�le points in the desired
part of the code in Code Composer and setting the proper clock rates. A Pentium II 400 MHz machine serves as the
host to the EVM. The Code Composer Studio uses the JTAG interface in the EVM for pro�ling the code.

Parameter Notation
Preamble length L
Number of Users K
Number of Paths P

Signal-to-Noise ratio SNR
Signal-to-Interference-Noise ratio SINR

Spreading gain N
Window size W

Number of Iterations M

Table 1. Parameters for Channel Estimation and Multistage Detection

4

3.1. Algorithm Implementation

The parameters on which the channel estimation algorithm6 and the multistage algorithm depend are shown in Table
1. The following parameters are used for our simulations for channel estimation as default :
N = 31, SINR = -10dB, SNR = 5dB, L = 150, K = 1 to 15, P = 3.
The main computation involved in the algorithm are matrix multiplications, matrix inversions, and matrix additions.
The code was implemented in C. The algorithm used for inversion of matrices was the LU Decomposition method.10

We use a simple Picksort method10 for sorting and re-arranging arrays. Though not an optimal (O(P 2)) method, it
is used as it is simple and P (the number of paths) is not large (three, in this case).

The following parameters are used for our simulations for multiuser detection as default:
N = 31, SINR = -10 dB, SNR = 6 dB, K = 12, W = 12, P = 1, M = 4.
The main computations involved in the algorithm are matrix - vector multiplication and additions. The code was
implemented in C.

3.2. DSP Implementation : Channel Estimation

The algorithm was initially written in Matlab for a quick implementation and veri�cation. After �nding that a �xed
point version may not be feasible, the code was then ported to general
oating point C code. The code was �rst
modi�ed to remove �le I/O for the DSP. Later, the functions were replaced with inline code for more aggressive
optimization. Also, this leads to elimination of some of the temporary variables which helps to save precious internal
memory space on the DSP. The C6701 DSP has assembly instructions which calculate the approximate inverse
reciprocal and inverse square root. The use of these approximate instructions was investigated. By pro�ling the
code, it was found that the critical part of the code consisted of matrix multiplications and dot product calculations.
The use of assembly language subroutines was studied for the critical parts. The assembly subroutines are not only
highly optimized code, but they also help in further reducing some temporary variables and loops. The assembly
routines used were the routines for matrix vector multiplication and for dot product calculation. Both of these
routines used were TI's
oating point assembly benchmarks.11

The code was compiled12 using the TI Code Generation Tools version 3.0 so as to place the variables and stack
in the external SRAM13 using the maximum optimization (-o3 -pm: �le with program level optimization) while the
code was placed in internal memory. A large memory model (-ml3) was used for our simulations due to the large
data sizes of the chosen parameters used in our code.

3.3. DSP Implementation : Multistage Detection

The code was initially written in Matlab for a quick implementation and veri�cation. The word length issues in the
implementation of the algorithm were studied. The code was then ported to 16-bit �xed point C Code. We exploited
several properties in the matrix structure to reduce the complexity.9 The use of di�erent optimization levels in our
code was also investigated to see the bene�ts. It was found that dot product calculations were the critical part in
the code. We investigated use of assembly subroutines for dot product calculation. We use TI's �xed point assembly
benchmarks14 for this purpose. This routine implements software pipelining, utilizing the entire eight functional
units and helps the algorithm achieve a maximum performance of 2 MAC/cycle.

The code was compiled using the TI Code Generation Tools version 3.0 so as to place the variables and stack in
internal memory as the entire data for the chosen parameters �ts in the available 64 KB internal memory. We study
the e�ect of di�erent levels of optimization to observe the improvements with each of the compiler options. We use
the default small memory model for the comparisons.

TMS320C6701 DSP Cycles
FP add instruction 1

FP multiply instruction 1
Approx. FP divide instruction 1

FP divide function 28
Approx. FP reciprocal square root instruction 1

FP squareroot function 34

Table 2. Instruction Cycles for C6701 DSP instructions

5

4. SIMULATION RESULTS AND ANALYSIS

4.1. Impact of Specialized Instructions for Channel Estimation

The initial code was written using the square root and division routines provided in the math library. It was observed
that these routines use the approximate specialized instructions available on the C6701 DSP as a initial seed and
then use 2 or 3 iterations of Newton-Raphson's method for convergence. We can see from Table 2, that the functions
for
oating point reciprocals and square-root in the math library take 28 and 34 cycles15 respectively, compared to
the single cycle approximate instructions for reciprocal squareroots and division. The approximate instructions are
supposed to be accurate in the exponent and atleast 8 bits in the mantissa. Hence, we decided to investigate the
e�ects of using just the hardware instructions on the accuracy and the execution time of the code. The execution
time for the base
oating point code versus the code using specialized instructions for square root and reciprocal is
shown in Figure 2.

From the �gure, we observe approximately 10% improvement in execution time performance due to the use of
the approximate specialized instructions. This bene�t is due to the elimination of the iterations for convergence.
We �nd that the use of these hardware instructions a�ect the accuracy of the algorithm to the order of 0.3%. The
performance bene�t is only 10% because the square roots and inversions are used only in the parameter extraction
part, which is not the critical code in the program. As can be seen, the use of assembly for the critical part of the
code has a much greater impact on the execution time, improving the performance by 100%. A close look at the
algorithm reveals that if there were additional instructions and hardware support for complex arithmetic, a greater
performance bene�t would be observed.

4.2. Optimization levels for Channel Estimation

We also show the performance bene�ts obtained by going to di�erent types of optimizations16 for the
oating point
code. This is shown in Figure 3(a) by considering the case for 15 users and using -o3 compiler optimization. As can
be seen from the �gure, we achieve 1.08X improvement by using specialized instructions only for square roots and
reciprocals. We can see that the execution time reduces by 2.34X by using highly optimized assembly subroutines for
matrix multiplications and dot products, which is the critical part in the code. Also, the assembly subroutines help
in eliminating some of the loops and intermediate variables. It may be possible to improve the performance more by
coding completely in assembly. Thus, we can see an overall improvement of 2.52X by modifying the original code to
suit the DSP.

0 5 10 15
0

20

40

60

80

100

120

140

 Number of users −−>

 E
xe

cu
tio

n
 t

im
e

(i
n

 m
ill

is
e

co
n

d
s)

 −
−

>

 Use of specialized instructions and assembly code on C6701 DSP

C6701: Original
C6701: with Intrinsics
C6701: with Assembly

Figure 2. Impact of Specialized instructions and Assembly code on execution time

6

1 2 3
0

10

20

30

40

50

60

70

80

90

100
 Effect of optimizations for Channel Estimation on C67 −−>

 E
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
)

−
−

>

 Base
(−o3 −pm)

 Approx.
(−o3 −pm with intrinsics)

 Assembly
(−o3 −pm with asm)

1 2 3
0

10

20

30

40

50

60

70

80

90

100
 Effect of optimizations for Multistage Detection on C62 −−>

 E
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
)

−
−

>

Global opt.
(−o3 −pm −mu)

Software pipelining
 (−o3 −pm) Assembly opt.

(−o3 −pm with asm)

a. Execution time for Channel Estimation b. Execution time for Multistage Detection

Figure 3. Optimization e�ects for Channel Estimation and Multistage Detection on C6701 and C6201 respectively

4.3. Optimization levels for Multistage Detection

Figure 3(b) shows the performance bene�ts obtained by the di�erent optimization methods work for the multistage
detection algorithm. The fully optimized code (-o3 -pm with assembly) executes 7.47X faster than the global register
optimization (-o3 -pm -mu). Due to the lack of functional unit utilization information, we looked at the assembly
code to �nd out the functional unit usage. The analysis using the assembly code could be done in this case as the
code was easier to analyze than the channel estimation code. We saw from the assembly code that global register
optimization (-o3 -pm -mu) without software pipelining has roughly one functional unit usage per instruction, which
means no parallelism. The software pipelining optimization (-o3 -pm) approaches approximately �ve functional units
usage per instruction. After inserting inline assembly code (-o3 -pm with assembly), we almost achieve the maximum
functional unit usage rate i.e. eight per instruction.

4.4. Memory requirements for Channel Estimation

DSPs have very stringent memory requirements and the programmer has to manually perform memory allocation
based on the size of the data. If the data does not �t in the 64 KB internal data memory of the chip, the programmer
has to place it in external memory. The C6701 EVM has 256 KB external SRAM and 8 MB external DRAM. The
memory requirements for the DSP is as shown in Figure 4(a). This is an approximate analysis and has been found
by calculating the array sizes based on the chosen parameters. It can be seen that for the chosen parameter values,
the data sizes for channel estimation do not �t in the internal 64 KB on-chip data memory and hence, have to be
placed in external SRAM. This type of analysis is extremely useful in deciding the optimum parameter sizes such
that all data can be placed in internal memory. In this case, we see that optimum allocation is between L = 130,
K = 1 and L = 100, K = 6, where L is the preamble length and K is the number of users. This is a conservative
estimate as the data memory may be used for other purposes such as the stack. However, for good performance, we
need a preamble of length 150 and which can support more users. So, all data has to be placed in external 256 KB
SBSRAM.

We have observed a signi�cant loss of performance when data is placed in external memory, especially for kernel
benchmarks such as dot product and FIR �lter. This is due to the slower accesses to external memory. We have
observed a factor of 4-5 improvement in these benchmarks when data is placed in internal memory. DSP programmers
need to be very cautious about memory usage as it is a scarce resource. Hence, the recent trend in DSP processors
to have greater levels of internal memory will be useful in this application. Also, the internal memory could be made
of DRAM instead of SRAM. This would increase the memory latencies and complexity but would help accomodate

7

100
120

140
160

180
200

0

5

10

15

20
5

6

7

8

9

10

11

12

x 10
4

Preamble Length

Data Memory Requirements for Multiuser Channel Estimation

Number of Users

D
a

ta
 M

e
m

o
ry

 r
e

q
u

ir
e

d
 (

in
 B

y
te

s
)

Data memory
(Internal)64KB

0
5

10
15

20

0

5

10

15

20
0

1

2

3

4

5

6

7

x 10
4

Detection Window Size (in bits)

Data Memory Requirements for Multistage Detection

Number of Users

D
a

ta
 M

e
m

o
ry

 r
e

q
u

ir
e

d
 (

in
 B

y
te

s
)

(Internal)64KB
Data Memory

a. Channel Estimation b. Multistage Detection

Figure 4. Memory Requirements for Channel Estimation and Multistage Detection

larger memory on-chip. Also, signi�cant power savings would be achieved as DRAMs consume signi�cantly less
amounts of power.

4.5. Memory requirements for Multistage Detection

The multistage detection algorithm completely �ts in internal memory for the chosen data ranges. This is shown
in �gure 4(b). However, we see that the variation is more with the number of users. So, such an analysis is useful
in �nding the parameters which have the maximum e�ect on the data memory and hence, it could help in deciding
optimal memory allocation.

5. MEETING REAL-TIME REQUIREMENTS

In this section, we discuss the real time requirements for channel estimation and multistage detection.

5.1. Real-time requirements for Channel Estimation

In the proposed W-CDMA standards, transmission is done using frames of 10 ms duration. Though the standards
are not yet �xed about the estimation schemes, we feel that a modi�cation of the proposed scheme will most likely be
used in the Random Access Channel for the uplink, based on a slotted-ALOHA approach.17,18 The random access
burst consists of 2 parts, a preamble part of 1 ms followed by a message part of 10 ms. Between the preamble and
the message, there is an idle time of 0.25 ms. The idle time allows for the detection of the preamble sequence and
subsequent on-line processing of the message part. Hence, we would ideally like to complete the channel estimation
in 0.25 ms. However, if the input data stream could be bu�ered, the estimation and detection could be done later.
The real-time requirements will depend on the latency that the application can tolerate.

5.2. Real-time requirements for Multiuser Detection

As mentioned in the introduction, proposed W-CDMA systems have a data rate requirements of 2Mbps indoor, 384
Kbps pedestrian, and 144 Kbps vehicular. The complexity of the multistage algorithm9 is approximately 3MK2N .

Using assembly code optimization, the C6201 DSP ensures about � = 2MAC per clock cycle in the kernel.15

Since C6201 operates at a clock cycle of Tc = 5ns, we can obtain a processing speed of about 150Kb/s/user for a
K = 15, M = 4 system.

8

8 9 10 11 12 13 14
50

100

150

200

250

300

350

400

450

500

550

Number of Users

M
ax

im
um

 B
it

R
at

e
P

er
 U

se
r

(k
b/

s)

SNR=10dB WindowSize=12

Conventional Multistage Method
Differencing Multistage Method
Complexity Esitimation Bound

Figure 5. The real-time processing speed of C6201 �xed point DSP

This rate is obtained by the relation below:

R =
1

3TcMK2=�
=

1

3� 5ns� 4� 152=2
� 150Kb=s=user (1)

This shows that a maximum of 15 users can be supported at a data rate of 150 Kb/s/user. Thus, greater advances
are required, both in algorithms and architectures for wireless communications, to handle the next generation W-
CDMA requirements. Figure 5 shows the complexity estimation bound and the actual pro�ling result by C6201. In a
12-user system, the di�erencing multistage detector can reach up to 150Kb/s/user, while the conventional multistage
detector8 can only process at 100Kb/s/user. This is due to the recoding techniques and the computational savings
used in the di�erencing algorithm. The speed curve does not approach the theoretical bound because many other
overhead operations such as memory accesses are involved.

5.3. Current and Future Trends in DSPs for Wireless Communications

The current trends of DSPs for wireless communication applications have shown highly encouraging signs. The
recently announced C6203 DSP has 512 KB of internal data memory and 384 KB of internal program memory. This
is almost 8 times the amount of internal memory present in the C6x01. This will de�nitely help in applications with
large data and program sizes such as the proposed channel estimation algorithm. The e�ect of DMA controllers and
caches may also be very useful in applications that need to access external memory. For example, the C6x11 has 4
KB each L1 program and data caches and a 64 KB L2 cache. The recent trends in DSPs to go to higher clock speeds
(C6203 - 250 MHz) and low voltages (C5402 - 1.2V) will also be bene�cial for wireless communication applications,
where power e�ciency and speed is very critical. We have also seen the advantage of integrating specialized blocks
such that the Viterbi Decoder in C54x in wireless communication applications. Hence, chip makers are suggesting
such approaches19 of a DSP core with additional specialized blocks for handling the performance requirements of
next generation W-CDMA. The compiler support for DSPs are also improving with the new version 3.0 of TI's C
compiler and Code Composer Studio. Our suggestions for OS support in the compiler to help in memory allocation
has also been acknowledged by TI for their future versions of Code Composer Studio.

It is suggested20 that even a futuristic billion-transistor-in-a-chip processor may not be able to satisfy personal
mobile computing requirements, if most of the chip area is devoted to caches. More chip area should be devoted
to internal memory and functional units to make a processor suitable for wireless applications. The use of a Vector
IRAM for future processors is also suggested. The future for processor technology for wireless applications looks
exciting and an interesting fusion of the above processor technologies may be seen in the near future.

9

6. CONCLUSIONS

The implementation of one of the proposed methods for multiuser channel estimation and detection for W-CDMA on
DSPs was studied. It was found that these algorithms have di�erent requirements in terms of complexity and precision
issues. A feasibility analysis showed that the channel estimation algorithm may be better suited for a
oating point
implementation while the multistage detection algorithm could be performed using a �xed point implementation.
An analysis of the memory requirements for the algorithms showed that the 64 KB internal memory of the C6701
was not su�cient for the chosen parameter sizes while the multistage detection algorithm �ts in the available 64
KB internal memory of the C6201. The e�ect of specialized instructions on the C6701 was also studied for channel
estimation. It was found that these instructions would be very useful in algorithms that involve a large number of
square roots and divisions. It was also found that additional instructions to support complex arithmetic would also
bene�t wireless communication applications. The recent trends in DSPs to have increased internal memory, faster
clock speeds, additional specialized blocks and instructions, better compilers and lower voltages all seem to greatly
enhance the use of DSPs for the next generation wireless communication systems.

REFERENCES

1. Fumiyuki Adachi, Mamoru Sawahashi, and Hirohito Suda, \Wideband DS-CDMA for Next-Generation Mobile
Communication Systems," IEEE Communications Magazine, vol. 36, no. 9, pp. 56{69, September 1998.

2. Erik Dahlman, Bjorn Gudmundson, Mats Nilsson, and Johan Scold, \UMTS/IMT-2000 Based on W-CDMA,"
IEEE Communications Magazine, vol. 36, no. 9, pp. 70{80, September 1998.

3. Tero Ojanpera and Ramjee Prasad, \An Overview of Air Interface Multiple Access for IMT-2000/UMTS,"
Tech. Rep., Nokia Research Center, Delft University of Technology, September 1998.

4. Andreas Polydoros and Savo Glisic, Code Division Multiple Access Communications, pp. 225{266, Kluwer
Academic Publishers, 1995.

5. Zoran Kostic and Selvarajan Seetharaman, \Digital Signal Processors in Cellular Radio Communication," IEEE
Communications Magazine, pp. 22{35, December 1997.

6. Chaitali Sengupta, Algorithms and Architectures for Channel Estimation in Wireless CDMA Communication
Systems, Ph.D. thesis, Rice University, Houston, TX, December 1998.

7. Sergio Verd�u, \Minimum probability of error for asynchronous gaussian multiple-access channels," IEEE
Transactions on Information Theory, vol. IT-32, no. 1, pp. 85{96, 1986.

8. Mahesh K. Varanasi and Behnaam Aazhang, \Multistage detection in asynchronous Code-Division Multiple
-Access communications," IEEE Transactions on Communications, vol. 38, no. 4, pp. 509{519, Apr. 1990.

9. Gang Xu, \Implementation Issues of multiuser detection in CDMA Communication Systems," M.S. thesis, Rice
University, Houston, TX, May 1999.

10. Willam Press, Brian Flannery, Saul Teukolsky, and William Vetterling, Numerical Recipes in C, Cambridge
University Press, 1991.

11. TI, \TMS320C67X Assembly Benchmarks at Texas Instruments," http://www.ti.com/sc/docs/products/dsp/
c6000/67bench.htm.

12. TI, TMS320C6x Optimizing C Compiler : User's Guide, TI, February 1998.

13. TI, TMS320C6x Evaluation Module : Reference Guide, TI, February 1998.

14. TI, \TMS320C62X Assembly Benchmarks at Texas Instruments," http://www.ti.com/sc/docs/products/dsp/
c6000/62bench.htm.

15. TI, TMS320C62x/C67x CPU and Instruction Set : Reference Guide, TI, March 1998.

16. TI, TMS320C62x/C67X : Programmer's Guide, TI, February 1998.

17. Riaz Esmailzadeh and Maria Gustafsson, \A New Slotted ALOHA Based Random Access Method for CDMA
Systems," in ICUPC, October 1997.

18. ETSI, \Submission of Proposed Radio Transmission Technologies," Tech. Rep., http://www.etsi.org/smg/
UTRA/utra.pdf, 1998.

19. Anthony Cataldo, \Chip makers sketch plans for 3G Cell Phones," http://www.eet.com/story/OEG1999
0416S0026, April 1999.

20. Christoforos E. Kozyrakis and David A. Patterson, \A New Direction for Computer Architecture Research,"
IEEE Computer, pp. 24{32, November 1998.

10

