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Abstract

We consider the problem of simultaneous parameter estimation and data restoration in a syn-
chronous CDMA system, in the presence additive Gaussian white noise with unknown parameters.
Bayesian inference of all unknown quantities is made from the superimposed and noisy received
signals. The Gibbs sampler, a Markov Chain Monte Carlo procedure, is employed to calculate
the Bayesian estimates. The basic idea is to generate ergodic random samples from the joint
posterior distribution of all unknowns, and then to average the appropriate samples to obtain the
estimates of the unknown quantities. Adaptive Bayesian multiuser detectors based on the Gibbs
sampler are derived for synchronous CDMA channel. A salient feature of the proposed adaptive
Bayesian multiuser detectors is that they can incorporate the a priori symbol probabilities, and they
produce as output the a posteriori symbol probabilities. (That is, they are “soft-input soft-output”
algorithms.) Hence these methods are well suited for iterative processing in a coded system, which
allows the adaptive Bayesian multiuser detector to refine its processing based on the information
from the decoding stage, and vice versa — a receiver structure termed as adaptive Turbo multiuser

detector.

1 Introduction

The theme of this paper is to treat two related problems in multiuser detection under a general

Bayesian framework. These problems are: (i) Optimal multiuser detection in the presence of
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unknown channel parameters; (ii) Multiuser detection for coded CDMA systems. We first provide
a perspective on the related works in these two areas.

Optimal multiuser detection with unknown parameters: The optimal multiuser detection al-
gorithms with known channel parameters, that is, the multiuser maximum-likelihood sequence
detector (MLSD), and the multiuser minimum a posteriori probability (MAP) detector, were first
investigated in [26, 27] (cf.[29]). The analysis of the computational complexity and the proof
that the optimal multiuser detection problem is combinatorially hard appeared in [26, 28]. When
the channel parameters (e.g., received amplitudes, noise variance) are unknown, it is of interest
to study the problem of joint multiuser channel parameter estimation and data detection from
the received waveform. This problem was first treated in [19], where a solution based on the
expectation-maximization (EM) algorithm is derived. In [22], the problem of sequential multiuser
amplitude estimation in the presence of unknown data is studied, and an approach based on
stochastic approximation is proposed. In [34], a tree-search algorithm is given for joint data
detection and amplitude estimation. Other works concerning multiuser detection with unknown
channel parameters include [6, 13, 14, 16, 18, 23].

Multiuser detection for coded CDMA: Most CDMA systems employ error control coding
to protect the transmitted data from being corrupted by the channel. Some recent work has
addressed multiuser detection for coded CDMA systems. In [9], the optimal decoding scheme for
convolutionally coded CDMA system is studied, which is shown to have a prohibitive computational
complexity. In [10], some low-complexity receivers which perform multiuser symbol detection and
decoding either separately or jointly are studied. In [17, 20, 31], Turbo multiuser detection schemes
for coded CDMA systems are proposed, which iterate between multiuser detection and channel

decoding to successively improve the receiver performance.

In this paper, we present novel adaptive Bayesian multiuser detection techniques for synchronous
CDMA communications with unknown channel parameters. We consider Bayesian inference of all
unknown quantities (e.g., received amplitudes, data symbols, noise variance) from the received
waveforms. A Markov Chain Monte Carlo procedure, called the Gibbs sampler, is employed to
calculate the Bayesian estimates. The performance of the proposed adaptive multiuser detectors
is demonstrated via simulations. The proposed Bayesian multiuser detectors can naturally exploit
the structure of the coded signals. Another salient feature of the proposed methods is that being
soft-input soft-output demodulation algorithms, they can be used in conjunction with soft channel
decoding algorithm to accomplish iterative joint adaptive multiuser detection and decoding - the

so-called adaptive Turbo multiuser detection.



The rest of the paper is organized as follows. In Section 2, the system under study is described.
In Section 3, some background material on the Gibbs sampler is provided. The problems of adaptive
Bayesian multiuser detection in synchronous CDMA channels are treated in Section 4 and Section
5 respectively. In Section 6, an adaptive Turbo multiuser detection scheme is presented. Some
discussions, including a decoder-assisted convergence assessment scheme and a code-constrained
Bayesian multiuser detector, are found in Section 7. Simulation results are provided in Section 8.

Finally, Section 9 contains the conclusions.

2 System Description
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Figure 1: A coded synchronous CDMA communication system.

We consider a coded synchronous CDMA system with K users, employing normalized modu-
lation waveforms s1,s9,---, 8K, and signaling through a channel with additive white noise. The
block diagram of the transmitter end of such a system is shown in Figure 1. The binary information
bits {dx(n)} for user k are encoded using some channel code (e.g., block code, convolutional code
or Turbo code), resulting in a code bit stream {zx(m)}. A code-bit interleaver is used to reduce
the influence of the error bursts at the input of the channel decoder. The interleaved code bits
are then mapped to BPSK symbols, yielding symbol stream {zy(7)}. Each data symbol is then
modulated by a spreading waveform s, and transmitted through the channel. The received signal

is the superposition of the K users’ transmitted signals plus the ambient noise, given by
K
r(i) = > Arap(i)sp+n(i), i=0,-,M—1 (1)
k=1

In (1), M is the number of data symbols per user per frame; Ay, b(7) and s, denote respectively



the amplitude, the i-th symbol and the normalized spreading waveform of the k-th user; n(i) =
[no(i) ni(i) -+ np_1(i)]T is a zero-mean white noise vector. The spreading waveform is of the

form

st = [Bro Bk - Brpal’, Brj € {+1,-1}, (2)

where P is the spreading factor. Define the following a priori symbol probabilities

(>

pk(l) P[wk(l):—l_l]v i=0,-- M-1;k=1,---, K. (3)

Note that when no prior information is available, then pi(i) = 1/2, i.e., all symbols are equally
likely.

It is further assumed that the additive ambient channel noise vector {n(¢)} is a sequence of
zero-mean independent and identically distributed (i.i.d.) random vectors, and it is independent
of the symbol sequences {zx(i)}X_,. Moreover, the noise vector n(i) is assumed to consist of i.i.d.

samples {nj(i)}fz_ol. The noise n;(¢) is assumed to have a Gaussian distribution, i.e.,
ni(i) ~ N (0,07, (4)

where o is the variance of the noise.
Denote ¥ 2 {r(0),r(1),---,7(M — 1)}. In Sections 4 and 5, we consider the problem of

estimating the a posteriori probabilities of the transmitted symbols

Pleg(i)=+1]Y], i=0,--M—1;k=1,---,K, (5)

based on the received signals Y and the prior information {pg(?) ?:’iwl_:lo, without knowing the

channel amplitudes {Ak}i{zl and the noise parameters (i.e., o2 for Gaussian noise; ¢, o7 and o3 for
impulsive noise). These a posteriori probabilities are then used by the channel decoder to decode

the information bits {dy(n)} shown in Figure 1, which will be discussed in Section 6.

3 The Gibbs Sampler

Over the last decade or so a large body of methods has emerged based on iterative Monte Carlo
techniques that are especially useful in computing Bayesian solutions to estimation problems with
high parameter dimensions. These methods are based on the theory of Markov chain limiting
behavior, and are collectively known as Markov Chain Monte Carlo (MCMC) techniques [24].

Most of these methods are aimed at estimating the entire posterior density and not just finding



the maximum a posteriori (MAP) estimates of the parameters. One of the most popular of these
methods is known as the Gibbs sampler [7], which is described next.

Let & = [f;, --- 64]" be a vector of unknown parameters and let Y be the observed data.
Suppose that we are interested in finding the a posteriori marginal distribution of some parameter,
say 6;, conditioned on the observation Y, i.e., p(6; | Y), 1 < j < d. Direct evaluation involves

integrating out the rest of the parameters from the joint a posteriori density, i.e.,

p(0;|Y) = //---/p(0|Y)d01---d0j_1d0j+1---dOd. (6)

In most cases such a direct evaluation is computationally infeasible especially when the parameter
dimension d is large. The Gibbs sampler is a Monte Carlo procedure for numerical evaluation of
the above multidimensional integral. The basic idea is to generate random samples from the joint
posterior distribution p(@ | Y'), and then to estimate any marginal distribution using these samples.
0 =gl ...

Given the initial values 6 0;0)]T, this algorithm iterates the following loop:

e Draw sample 0§n+1) from p (01 | Ogn), . -,Ogn), Y);

e Draw sample 0§n+1) from p (02 | 0§n+1)7 Hgn), - -,Hgn), Y);

e Draw sample 051 ) from p (Hd | 63 n+1 . -,95;1-'{1), Y).

Under regularity conditions, the vectors 0(0), 0(1), - -,0(”) --- are a realization of a homogeneous

Markov chain with the transition kernel from state 8’ to state 6, given by
I(<0/70) = p<01|0/27"'7 d> ) (02|017037" d?Y)"'p(0d|017"'70d—17Y)' (7)

The convergence behavior of the Gibbs sampler is investigated in [3, 7, 8, 15, 21, 25] and general

conditions are given for the following two results:

e The distribution of (" converges geometrically to p(6 | Y), as n — oc.

Z f (n)) a.8. /f p(0|Y)dO, as n — oo, for any integrable function f.

The Gibbs sampler requires an initial transient period to converge to equilibrium. The initial
period of length ng is known as the “burning-in” period and the first ng samples should always be

discarded. Detecting convergence is usually done in some ad hoc way. Some methods are found in

[24].



4 Adaptive Bayesian Multiuser Detector

In this section, we consider the problem of computing the a posteriori probabilities in (5) under

the assumption that the ambient noise distribution is Gaussian. That is, the pdf of n(¢) in (1) is

given by
pn(i) = ——exp (—W) . (%)
(2mo?)2
Denote
2(i) 2 [o1(i) 22(i) - 2], = 0,1 00, M~ 1,
B(i) 2 diag(z1(7), z2(1), - -, 2k (7)), i =0,1,---, M — 1,
X 2 [2(0)2(1) - 2(M-1)],
Y £ [r(0) (1) - (M - 1)),
a = [A Ay Ag]T
2 diag(Ay, Ay, -+, Ax),
N
= [s1 8 -+ sK].
Then (1) can be written as
r(i) = SAz(i)+ n(i) (9)
— SB(i)a+n(i), i=0,1,---,M—1. (10)

The problem is solved under a Bayesian framework: First, the unknown quantities a, 02 and X
are regarded as realizations of random variables with some prior distributions. The Gibbs sampler,
a Monte Carlo method, is then employed to calculate the maximum a posteriori (MAP) estimates

of these unknowns.

4.1 Bayesian Inference

Assume that the unknown quantities @, 02 and X are independent of each other and have prior
distributions p(a), p(c?) and p(X), respectively. Since {n(7) f\ial is a sequence of independent
Gaussian vectors, using (8) and (9), the joint posterior distribution of these unknown quantities
(a,0% X) based on the received signal Y takes the form of

p(a,0’,X|Y) x p(Y]a,0%X) p(a)p(o?) p(X)

PM

1 2 1 M= . 2 2
< () " ew (—@anm—smmn)pm)p(a)p(X). (11)

=0



The a posteriori probabilities (5) of the transmitted symbols can then be calculated from the joint

posterior distribution (11) according to

Pl =+11Y]= Y pX|¥)= Y /p(a,aZ,X|Y)dad02. (12)
X zg(1)=+1 X: zg(1)=+1

2M=1 multi-dimensional integrals, which is certainly

Clearly the computation in (12) involves
infeasible for any practical implementations. To avoid the direct evaluation of the Bayesian estimate
(12), we resort to the Gibbs sampler discussed in Section 3. The basic idea is to generate ergodic
random samples {a(”), O'Z(n), X0 = 0,1,-- } from the posterior distribution (11), and then to
average {zx(i)™ : n = 0,1,---} to obtain an approximation of the a posteriori probabilities in

(12).

4.2 Prior Distributions

In principle, prior distributions are used to incorporate the prior knowledge about the unknown
parameters, and less restrictive (or less informative) priors should be employed when such knowledge
is limited. Computational complexity is another consideration that affects the selection. Conjugate
priors are usually used to obtain simple analytical forms for the resulting posterior distributions. To
make the Gibbs sampler more computationally efficient, the priors should also be chosen such that
the conditional posterior distributions are easy to simulate. We next specify the prior distributions
p(a), p(c?) and p(X).

For the unknown amplitudes a, a complex Gaussian prior distribution is assumed,

pla) ~ N(ag,X). (13)

Note that large value of £ corresponds to the less informative prior. For the noise variance o2, an

inverse chi-square prior distribution is assumed,

o

P (02) _ % <i) T+l exp <_ 1/20(;\20) ~ x2(10, Ao), (14)

2
D) g

Voo
or

00~ (). (15)

Small value of vy corresponds to the less informative priors (roughly the prior knowledge is worth v
data points). The value of vyAg reflects the prior belief of the value of o2, Finally since the symbols

{xk(z)}f:’i\ﬂ_:% are assumed to be independent, the prior distribution p(X') can be expressed in



terms of the prior symbol probabilities defined in (3) as

M-1 K
p(X) = I IT re(i)11 = pi(i)]' 0%, (16)

=0 k=1

where §y; is the indicator such that é5; = 1if zx(¢) = +1 and é5; = 0 if z4(2) = —1.

4.3 Conditional Posterior Distributions

The following conditional posterior distributions are required by the Gibbs multiuser detector in

(Gaussian noise.

1. The conditional distribution of the amplitudes @ given ¢?, X and Y is given by

plalo®,X,Y) ~ N(a., 3.), (17)
A 1 M
with =71 = =7'+ — > B({))RB(i), (18)
g 1=0
A 1 M
and a. = 3. (Ealao—l——Q B(i)STr('i)), (19)
g =0

where in (18) R 2575,

2. The conditional distribution of the noise variance o2 given @, X and Y is given by

_ Voo + 2
P (a2 | a,x,Y) ~ X2 (VO + PM, VZJSW) , (20)
A 2
odo o) 2w+ P, 1)
A Mo
with s* = Z |r(i) — SAz(i)|. (22)
=0

3. The conditional probabilities of zx(i) = +1, given a, 0%, X; and Y can be obtained from

[where X1; denotes the set containing all elements of X except for z4(7).]

P [24(i) = +1] @, 0%, Xy, Y] pu(i) WUy o1, o
- ; = - exp { —5 S [r(z) — SAa:k(z)] ,
p [ack(z) =-1|a,o ,X;mY] 1 — pi(3) g

k=1, K; i=0,---,M—1. (23)

where 20(7) £ [21(i), - -, 24—1(1), 0, 2pyr (i), - -, 2 (3)]T



4.4 Gibbs Multiuser Detector in Gaussian Noise

Using the above conditional posterior distributions, the Gibbs sampling implementation of the
adaptive Bayesian multiuser detector in (Gaussian noise proceeds iteratively as follows. Given the

2(0)

initial values of the unknown quantities {a(o), o, X (0)} drawn from their prior distributions,

and forn=1,2,---
1. Draw a(™ from p (a | UQ(n_l),X(”_l), Y) given by (17).
2. Draw o2™ from P (02 | a®, x(-1) Y) given by (21).

3. Fori=0,1,---, M -1
Fork=1,2,---, K
Draw z(7)(") from P [mk(z) | a(”),UQ(n),ng), Y] given by (23),

where ng) = {m(O)(n)’ 2= D), 206, 2po1 (D), 231 (1), -,
acK(i)(n—l)7 a;(z + 1)(n—1)7 . a:(ﬂ/[ _ 1)(n—1)}_

Since the amplitudes Ap’s are positive, in the first step we adopt the constrained Gibbs sampler
[4, 5]. To draw samples of a that satisfy this condition, the so-called rejection method [30] can
be used. For instance, after a sample is drawn from (17), check to see if the constraints Ay > 0,
k=1,---, K, are satisfied; if not, the sample is rejected and a new sample is drawn from (17); the
procedure continues until a sample is obtained that satisfies the constraint.

To ensure convergence, the above procedure is usually carried out for (ng + N) iterations and
samples from the last N iterations are used to calculate the Bayesian estimates of the unknown

quantities. In particular, the a posteriori symbol probabilities in (12) are approximated as

1
Pla(i) = +11Y] = + > G (24)
n=ng+1
where 6£?) is the indicator such that 6£?) =1if xgcn) =41 and 6;;0 =0if :Cgcn) = —1. Furthermore,

2

if desired, the estimates of the amplitudes @ and the noise variance o* can also be obtained from

the corresponding sample means

R

E{a|Y} ~ S al, (25)

and E{02|Y} = v > o2, (26)



The posterior variances of @ and o2, which reflect the uncertainty in estimating these quantities on

the basis of Y, can also be approximated by the sample variances, as

1 no+N H 1 no+N no+N H
Cov{a |Y} = — Z [a(”)] [a(”)] - Z a™ Z a™| (27
N n=ng+1 N n=ng+1 n=ng+1
no+N no+N 2
and  Var {02 | Y} = % Oz: [UQ(H)]Q — ,{2 Oz: 2 (28)
- n=ng+1 N n=ng+1

Note that the above computations are exact in the limit as N — oo. However, since they involve
only a finite number of samples, we think of them as approximations, but realize that in theory
any order of precision can be achieved given sufficiently large sample size N. The complexity of the
above Gibbs multiuser detector is O( K>+ K M), i.e., it has a term which is cubic with respect to
the number of users K [due to the inversion of the matrix in (18)], and a term which is linear with
respect to the symbol block size M [as opposed to ezponential as in the direct implementation of

the Bayesian symbol estimate (12).].

5 Iterative Joint Multiuser Detection and Decoding — Adaptive
Turbo Multiuser Detection

Recently iterative (“Turbo”) processing techniques have received considerable attention followed by
the discovery of the powerful Turbo codes [1, 2]. The so called Turbo-principle can be successfully
applied to many detection/decoding problems such as serial concatenated decoding, equalization,
coded modulation, multiuser detection and joint source and channel decoding [12]. In this section,
we consider employing iterative joint multiuser detection and decoding to improve the performance
of the adaptive Bayesian multiuser detector in a coded CDMA system. Because it utilizes the a
priori symbol probabilities, and it produces symbol (or bit) a posteriori probabilities, the adaptive
Bayesian multiuser detectors developed in this paper is well suited for iterative processing which
allows the adaptive multiuser detector to refine its processing based on the information from the
decoding stage, and vice versa. In [31], a Turbo multiuser receiver is developed for coded CDMA
systems with Gaussian noise, under the assumption that the received amplitudes and the noise
variance are known to the receiver. In what follows we develop adaptive Turbo multiuser receivers
for synchronous CDMA channels, with unknown amplitudes and noise parameters.

The iterative (Turbo) receiver structure is shown in Figure 2. It consists of two stages: the

adaptive multiuser detector developed in the previous sections, followed by a soft-input soft-output

10
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Figure 2: Tterative processing for joint Bayesian multiuser detection and decoding — adaptive Turbo
multiuser detection.

channel decoder. The two stages are separated by deinterleavers and interleavers. As discussed in
the previous sections, the adaptive multiuser detector delivers the a posteriori symbol probabilities

{Plzx(i)=+1] Y] ﬁz’i\{;lo Based on these, we first compute the a posteriori log-likelihood ratios

(LLR’s) of a transmitted “+1” symbol and a transmitted “—1” symbol,

Plaw(i) = +1] Y]

A
= Pleni) = —1| Y]’

Aq[zi(i)] = log k=1,--- K; 1=0,---, M — 1. (29)

Using the Bayes’ rule, (29) can be written as

pY | 2x(i) = +1]
PIY [t = 1] T8 Ploy(i) = 1]’

A1 [z (7)] A [k (1)

Plew(i) = +1]

A[zi(i)] = log (30)

where the second term in (30), denoted by Aj[zx(7)], represents the a priori LLR of the code bit
21(7), which is computed by the channel decoder in the previous iteration, interleaved and then
fed back to the adaptive Bayesian multiuser detector. (The superscript ? indicates the quantity
obtained from the previous iteration). For the first iteration, assuming equally likely code bits, i.e.,
no prior information available, we then have MNJ[z(i)] =0,k =1,---, K, =0,---, M — 1. The first
term in (30), denoted by Aj[zy(7)], represents the eztrinsic information delivered by the adaptive
Bayesian multiuser detector, based on the received signals Y, the structure of the multiuser signal
given by (1) and the prior information about all other code bits. The extrinsic information A;[z(7)],
which is not influenced by the a priori information AY[z(7)] provided by the channel decoder, is
then reverse interleaved and fed into the channel decoder, as the a priori information in the next

iteration.

11



K:M—1

be1.m—o> and the structure of

Based on the extrinsic information of the code bits {A][zx(m)]

the channel code, the soft-input soft-output channel decoder computes the a posteriori LLR of each

code bit [31],

Plzg(m) = +1 | {N[2x(i)] f:;%__lo; decoding]

Plzr(m) = =1 [ {\[zx(4)] f iwz _,; decoding]

= Agfzp(m)] + A[zg(m)]. (31)

>

Aslzi(m)]

log

It is seen from (31) that the output of the soft-input soft-output channel decoder is the sum of
the prior information A{[zx(m)], and the eztrinsic information Ay[z(m)] delivered by the channel
decoder. This extrinsic information is the information about the code bit z;(m) gleaned from the
prior information about the other code bits, {\/[z%({)]}im, based on the constraint structure of
the code. The soft channel decoder also computes the a posteriori LLR of every information bit,
which is used to make decision on the decoded bit at the last iteration. After interleaving, the

1

extrinsic information delivered by the channel decoder {/\g[xk(m)}ﬁyn::o is then used to compute

the a priori symbol distributions {p(7) f i\{ _,, defined in (5), from the corresponding LLR’s as

follows. Since Aj[zx(7)] = log % after some manipulations,
. exp (NLre(1)])

P (7) Play(i) = +1] =

1+ exp (Ay[zx(i))
_ % [1 + tanh (%/\g[;rk(i)])] . (32)

The symbol probabilities {pg (i )}k Lrim 0 are then fed back to the adaptive Bayesian multiuser
detector as the prior information for the next iteration. Note that at the first iteration, the extrinsic
information {Ai[zx(7)]} and {A2[zx(7)]} are statistically independent. But subsequently since they
use the same information indirectly, they will become more and more correlated and finally the

improvement through the iterations will diminish.

6 Discussions

Decoder-assisted convergence assessment

Detecting convergence in the Gibbs sampler is usually done in some ad hoc way. Some methods
can be found in [24]. One of them is to monitor a sequence of weights that measure the discrepancy
between the sampled and the desired distribution. In the application considered here, since the

adaptive multiuser detector is followed by a bank of channel decoders, we can assess convergence

12



by monitoring the number of bit corrections made by the channel decoders. If this number exceeds
some predetermined threshhold, then we decide convergence is not achieved. In that case the Gibbs
multiuser detector will be applied again to the same data block. The rationale is that if the Gibbs
sampler has reached convergence, then the symbol (and bit) errors after multiuser detection should
be relatively small. On the other hand, if convergence is not reached, then the code bits generated
by the multiuser detector are virtually random and do not satisfy the constraints imposed by the
code trellises. Hence the channel decoders will make a large amount of corrections. Note that
there is no additional computational complexity for such a convergence detection: we only need
to compare the signs of the code-bit log-likelihood ratios at the input and the output of the soft

channel decoder to determine the number of corrections made.

Code-constrained Gibbs Multiuser Detectors

Another approach to exploiting the coded signal structure in adaptive Bayesian multiuser detection
is to make use of the code constraints in the Gibbs sampler. For instance, suppose that the user
information bits are encoded by some block code of length I and the code bits are not interleaved.
Then one signal frame of M symbols contains J = fracM L code words, with the j-th code word
given by
M

2x(7) = [ex(G L), er(GL + 1), ax(GL+ L= D], j =01, =
Let X} be the set of all valid code words for user k. Now in the Gibbs sampler, instead of drawing
each individual symbols zy(i) once a time according to (23), we draw a code word z,(j) of L
symbols from A, each time. Specifically, let —1 denote the code word with all entries being “—1”s
(this is the so-called all-zero code word and it is a valid code word for any block code [32]). If the
ambient channel noise is Gaussian, then for any code word u € A%, the conditional probability of

z(j) = u, given the values of the rest of the unknowns, can be obtained from

Plz(j)=ula,0® Xy, Y . 24 L-1
bl bl bl pk E k . .
[ . 2 ] = 1 _ ]( ()u) 1 exp 0-2 Sg E {T(JL + l) - SACE%(]L —I_ l)] [l
Plei) = ~11ay0% X5, Y| i =
M
b=l Ky =010 — = 1, (33)

where X ; denotes the set containing all elements of X except for z,(5); pr;(u) 2 Plzy(j) = u]; and
z9(1) = [21(3), -y 2k—1(4), 0, 211(3), - - -, 2k (i)]T. The advantage of sampling a code word instead

of sampling an individual symbol is that it can significantly improve the accuracy of samples drawn

13



by the Gibbs sampler, since only valid code words can be drawn. This will be demonstrated by

simulation examples in the next section.

Relationship between the Gibbs sampler and the EM algorithm

The Expectation-Maximization (EM) algorithm has also been applied to joint parameter estimation
and multiuser detection [19]. The major advantage of the Gibbs sampling technique proposed here
over the EM algorithm is that the Gibbs sampler is a global optimization technique. The EM
algorithm is a local optimization method and it can easily get trapped by local extrema in the
likelihood surface. The EM method performs well only if the initial estimates of the channel and
symbols are close enough to their true values. On the other hand, the Gibbs sampler is guaranteed
to converge to the global optimum with any random initialization. Of course, the convegence rate
crucially depends on the “energy gap” on the joint posterior density surface. Many modification of
the Gibbs sampler have been developed to combat the “large energy gap” situation. For example,

see [11, 33].

7 Simulations

In this section, we provide some simulation examples to illustrate the performance of the adaptive
Bayesian mulituser detectors developed in this paper. We consider a 5-user (/K = 5) synchronous
CDMA channel with processing gain P = 10. The user spreading waveform matrix S and the

corresponding correlation matrix R are given respectively by

(-1 -1 1 1 -1 1 -1 1 -1 1] 1 -2 —2 4
, 1 1 -1 -1 -1 -1 -1 1 1 1 , -2 1 2
sT = 1 - 1 -1 -1 - - R=5Ts=_—| _: —
7T 1 -1 -1 1 -1 -1 -1 -1 1 =1, o2 2 1 -4
-1 -1 1 -1 -1 -1 1 1 -1 1 4 0 -4 1
1 1 -1 -1 -1 1 -1 -1 =1 =1 | -2 2 2 —4

Convergence Behavior of the Gibbs Multiuser Detectors

We first illustrate the performance of the proposed adaptive Bayesian multiuser detector in
Gaussian ambient noise. In Figure 3, the convergence behavior of the Gibbs multiuser detector is
illustrated for noise level 02 = —2dB. The first 100 samples drawn by the Gibbs sampler for the

2

user amplitudes (Aq, Az, As, A4, A5) and the noise variance o are shown. The corresponding true
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Figure 3: Samples drawn by the Gibbs multiuser detector in a Gaussian synchronous CDMA channel.
A? = —4dB, A2 = —2dB, A3 = 0dB, A2 = 2dB, A% = 4dB, and ¢? = —2dB.
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values of these quantities are also shown in the same figure as the straight lines. It is seen that the

Gibbs sampler converges fairly rapidly (within about 20 iterations).
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Performance of the Adaptive Turbo Multiuser Detectors
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Figure 4: Bit error rate performance of the adaptive Turbo multiuser detector in a synchronous CDMA

system with Gaussian noise. All users have the same amplitudes.

We now illustrate the performance of the adaptive Turbo multiuser detectors discussed in
Section 6. The channel code for each user is a rate 3 constraint length-5 convolutional code (with
generators 23, 35 in octal notation). The interleaver of each user is indepedently and randomly
generated, and fixed for all simulations. The block size of the information bits is 128. (i.e., the code
bit block size is M = 256.) The code bits are BPSK modulated, i.e., 2 € {+1,—1}. All users have
the same amplitudes. In computing the symbol probabilities, the Gibbs sampler is iterated 100
runs for each data block, with the first 50 iterations as the “burn-in” period. The symbol posterior
probabilities are computed according to (24) with ng = N = 50.

Figure 4 illustrates the bit error rate performance of the adaptive Turbo multiuser detector

for User 1 and User 3. The code bit error rate at the output of the adaptive Bayesian multiuser
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detector is plotted for the first three iterations. The curve corresponding to the first iteration is
the uncoded bit error rate at the output of the adaptive Bayesian multiuser detector. The uncoded
and coded bit error rate curves in a single-user additive white Gaussian noise (AWGN) channel
are also shown in the same figure (as respectively the dash-dotted and the dashed lines). It is
seen that by incorporating the extrinsic information provided by the channel decoder as the prior
symbol probabilities, the proposed adaptive Turbo multiuser detector approaches the signle-user

performance in an AWGN channel within a few iterations.

Performance of the Code-constrained Gibbs Multiuser Detectors

Finally we consider the performance of the code-constrained Gibbs multiuser detectors discussed
in Section 7. We assume that each user employs the (7,4) cyclic block code with eight possible
codewords [32]:

l
P T e N N T e NI N

R N N e =

The bit error rate performance of the code-constrained Gibbs multiuser detector in Gaussian
noise is shown in Figure 6. In this case the Gibbs sampler draws a code word from A" at each time,
according to (33). In the same figure, the unconstrained Gibbs multiuser detector performance
before and after decoding is also plotted. It is seen that by exploiting the code constraints in the

Gibbs sampler, significant performance gain is achieved.

8 Conclusions

In this paper, we have developed a new adaptive multiuser detection scheme which is optimal in
the sense that it is based on the Bayesian inference of all unknown quantities. Such an adaptive
Bayesian multiuser detector can be efficiently implemented using the Gibbs sampler, a Markov
Chain Monte Carlo procedure for computing Bayesian estimates. We have derived the adaptive

multiuser detection algorithms for the Gaussian synchronous CDMA channel. The proposed
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Figure 5: Bit error rate performance of the code-constrained Gibbs multiuser detector in a synchronous

CDMA system with Gaussian noise. All users have the same amplitudes.
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adaptive Bayesian multiuser detectors can incorporate the a priori symbol probabilities, and they
produces as output the a posteriori symbol probabilities. That is, they are “soft-in soft-output”
algorithms. Hence they are very well suited for iterative processing in a coded system, which
allows the adaptive Bayesian multiuser detector to refine its processing based on the information
from the decoding stage, and vice versa — a receiver structure termed as adaptive Turbo multiuser
detector. Furthermore, the channel decoder facilitates a simple way of assessing the convergence of
the adaptive multiuser detector by monitoring the number of bit corrections made. Moreover, if
the user data are encoded by a short block code, then by exploiting the constraint on the valid code
words in the Gibbs sampler, significant improvement on the performance of the adaptive Bayesian
multiuser detector can be obtained. Future extensions to this work include generalizations of the
techniques proposed here to asynchronous CDMA systems and to systems with multipath fading

effects.
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