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Abstract: In this paper, we describe some important issues and our progress in implemen
Turbo decoder on the TMS320C6201 programmable DSP. Furthermore, we describe
advancements that might make a Turbo decoder implementation on the C6x more efficient
Benchmarks for evaluating the performance of hardware implementations are featured, as
performance results for efficient implementations on the Texas Instruments TMS320C6201
point DSP.

I. INTRODUCTION

Turbo codes are being proposed for the 3rd generation wireless standard known as 3G
In this paper, we describe an implementation of the Turbo decoder algorithm in a C6x alon
important implementation issues. The issues include normalization, a stopping criteria, 
termination, etc.

The parallel-concatenated Turbo encoder takes the form as shown in Figure 1 [2

information vector  is input into a recursive systematic convolutional code (RSCC) an
interleaved version of it is input into a second RSCC encoder. The Turbo encoder output 

, , and  are all binary, i.e. have components drawn from . We assume th
modulator is binary and implements the mapping  where  

. Furthermore, we assume that the channel noise is AWGN with power . 
each measured component is given by a Normal distribution with conditional mean 

RSCC #1

INTERLEAVER
SIZE N RSCC #2

Figure 1. Parallel concatenated Turbo encoder.
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conditional variance . Let the measured vectors be denoted , , and . These are
converted into log-likelihood ratios (LLR) by scaling by the factor . Let , , a

 denote the measured vectors in LLR form. 

The standard Turbo decoder algorithm is shown in Figure 2 [2]. The parity LLR vector

input into two different MAP decoders and  is combined with an extrinsic vector prio
each MAP decoder. The result is an algorithm that iterates around a loop which succe
refines the estimate of the information vector until convergence is reached. 
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Figure 2. parallel concatenated Turbo decoder. 
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A simpler form for the Turbo decoder is shown in Figure 3. Here each MAP decoder esti

the extrinsic vectors directly. This direct measure of the extrinsic vectors is achieved with a
complexity reduction in the MAP decoder and it also eliminates the subtraction at the out
each MAP decoder shown in Figure 2. This version of the decoder is also more inherently
when using fixed-point numbers. 

MAP Decoder: 

The MAP decoder requires that two sets of state metrics be computed, one using a f
recursion through the trellis, the  metrics, and one using a backward recursion throu
trellis, the  metrics. 

Specifically, the  metrics are computed using the forward recursion

(1)

where  and  are the states at stage  that join to state k at trellis stage i. This recursion is
initialized by

Figure 3. Simplified Turbo decoder. 
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where an index of  refers to the all zero state. Similarly the  metrics can be com
by the backward recursion

(2)

where  and  are the states at stage i that join to state j at trellis stage . The initial
conditions are 

.

For a rate 1/2 RSCC, the  metrics are given by

where  and where  refers to a component of  or . Finally, the extri
output is given by

(3)

where  and  refer to the extrinsic and parity associated with the same MAP decoder. W
that there are always the same number of branches associated with each summation. Th
any constant offset associated with either the alpha or beta metrics for a give set of trellis
will subtract out. 

II. TURBO DECODER ISSUES

There are two issues associated with a practical implementation that we briefly discu
state metric normalization, and (2) a stopping criteria. 

A. Normalization

As the state metrics are successively computed for the forward recursion, a positiv
becomes apparent. This is a problem if a number representation is used that limits the d
range, such as fixed-point numbers. Since the calculation for  is not affected by a co
offset for the alpha metrics at a given set of state metrics, the alpha metrics can be norma
subtraction by a constant for that state. A similar observation is made for the beta metrics. 
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where  is the number of states in the trellis per stage. 

B. SNR Stopping Criteria

A second issue deals with the iterative nature of the decoder. The bit-error rate 
associated with the output of the Turbo decoder after each complete iteration reaches a 
diminishing returns (convergence). Moreover, the BER at a given iteration varies widely for
received codeword. Most of the received codewords will converge after just 2 or 3 itera
while a small percentage of codewords require 8 or more iterations to converge. Since the 
of decoder iterations directly relates to latency (and complexity if it is defined in terms of
operations), then it is desirable to reduce the average number of iterations required for Turb
decoding. We introduce a simple method for terminating the iterative process in the 
decoder that involves measuring the signal-to-noise ratio (SNR) of the extrinsic information
output of each MAP decoder. When the SNR exceeds some predetermined thresho
iterations are stopped. 

It is well known [2] that the extrinsic components become conditionally Gaussian a
Turbo decoder iterates. This suggests that the BER associated with the extrinsic vector 
determined using the standard Q-function. In fact, the argument of the Q-function can be 
to an extrinsic SNR. The standard relationship between SNR and the BER of a BPSK mod
scheme is

where  is the error probability associated with the extrinsic vector  and  is
corresponding extrinsic SNR. 

The  can be empirically determined from the components by

where 

C Max Ai k( )  k 0 1 … S 1–, , ,=;{ }=

S
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Although the extrinsic components are not very Gaussian prior to convergence, this is exac
situation where  is small and, therefore, is not of concern. From a complexity stand
the mean and variance calculation given above can be done as the extrinsic components a
calculated and do not constitute a significant amount of additional complexity. 

To illustrate the virtue of this approach, the histogram of the extrinsic components 
plotted for a Turbo code using 4-state RSCC and a blocklength of 120. The result, given in 
4, shows that the extrinsic vector diverges rapidly at some particular iteration. This diver
also corresponds to the iteration where no errors in the decoded vector occur. The followin
illustrates the typical trend for a specific received codeword which resulted in no decoded
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after iterating 5 times. 

The following table gives actual performance results for the same Turbo code with 4
constituent RSCC and for 3 different thresholds. The table clearly shows that there

performance trade-off of # iterations vs. the decoded BER that is a function of the SNR thre

Table I. SNR stopping criteria results. 

Threshold = 25 Threshold = 10 Threshold = 5

Eb/No

# Decoder 
Errors

Ave. Iterations 
per Block

# Decoded 
Errors

Ave. Iterations 
per Block

# Decoded 
Errors

Ave. Iterations 
per Block

0 7865 4.902 7861 4.697 7873 4.538

1 1336 4.372 1336 3.609 1361 3.161

1.5 396 3.858 398 2.942 442 2.460

2 94 3.348 94 2.444 141 2.002

2.5 30 2.865 30 2.087 104 1.595

3 0 2.506 4 1.806 74 1.288
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Figure 4. Historgram of the an extrinsic vector
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The threshold of 25 gave rise to performance that was nearly identical to the performance
full number of iterations but resulted in about half the number of average iteration

dB. We also observe that for low SNR, the decoder iterates the full number of 
regardless of the threshold. Clearly, the threshold should be set according to the designed 

III. TMS320C6201 IMPLEMENTATION

This section describes our C6x implementation as it currently stands. This is an ongoing
and our future interests will be focused on implementing the stopping criteria and in stream
the implementation to maximize the data throughput rate. 

A. Development and Test Environment

The hardware and software environment used to implement the Turbo Decoder consi
an evaluation module provided by Texas Instruments and a software development enviro
provided by GO DSP. All hardware used in the development was on the TMS320C62001
(evaluation module). The primary hardware resources that were used in the de
implementation are: 

• TMS32062001 fixed-point digital signal processor with a maximum clock frequenc
200MHz.

• 64k bytes of internal program memory running at system clock speed of 200MHz.

• 64k bytes of internal data memory running at system clock speed.

• 8M bytes of SDRAM located on the EVM running at 100MHz maximum clock freque
(systemclockspeed/2). The SDRAM was used to store the sample data and post pro
of the decoded data to gather error statistics.

The limited memory resources of the hardware and the desire for high throughput dema
judicious use of memory and computational resources. Fortunately, careful storage and m
re-use allowed for maximum throughput for block lengths up to 2000 information bits using
the DSP's internal data memory for storage of all computation. For applications requiring
memory, the external SDRAM could be used to allow block sizes as long as 512,000 inform
bits but result in a throughput reduction. 

B. Memory Organization

All memory resources are accessed via the TMS320's on-board DMA controller.
TMS320C6x compiler allows flexible mapping of the memory resources. A memory mod
first selected in order to divide the memory up into regions that characterize the size and s
the memory. The memory model used for the Turbo Decoder implementation is shown in Ta
The fastest memory regions are the internal program memory (IPM), and internal data m
(IDM). The IPM stores the actual DSP executable code. The IDM stores the stack, local var

Eb N0⁄ 3=
8
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and any variables that require high-performance memory. The remaining memory regions 
slower external memory. Table III shows how the various program variables are assig
memory regions. Most of the region assignments are fairly general. However, the de
working memory, sample data, and error statistics section assignments were made due
program's requirement for performance during certain variable accesses. The Turbo de
working memory is assigned to the IDM for high performance, while all post-processing me
is assigned to the slower memory regions. 

BS = interleaver size
NS = Number of encoder states
NB = Number of branches from a state
NBL = Number of blocks

Table II. Memory Model Used for the Turbo Decoder Implementation

Memory Type Origin (Hex)
Length

(Hex Bytes)
Length

(Hex Bytes) Type

INTPROG 0x00000000 0x010000 64k IPM

INTDATA 0x80000000 0x010000 64k IDM

EXTMEM0 0x00400000 0x040000 256k SBSRAM

EXTMEM1 0x02000000 0x400000 4M SDRAM

EXTMEM2 0x03000000 0x400000 4M SDRAM

Table III. Decoder Memory Section Assignments

Region Variable Description Type Size

INTDATA IMAP[BS] Interleaver map ushort 2 BS

INTDATA IMAPU[BS] Deinterleaver map ushort 2 BS

INTDATA LxAD[BS] received x sample short 2 BS

INTDATA Lp1AD[BS] received parity 1 sample short 2 BS

INTDATA Lp2AD[BS] received parity 2 sample short 2 BS

INTDATA Lext1[BS] MAP dec. 1 extrinsic data short 2 BS

INTDATA Lext2[BS] MAP dec. 2 extrinsic data short 2 BS

INTDATA A[BS][NS] Alpha calculations short 8 BS

INTDATA B[BS][NS] Beta calculations short 8 BS

INTDATA numErrors Post-processing data unsigned 4

Total: 30 BS + 4

EXTMEM1 xSamples[BS NBL] all received x samples short 2 BS NBL

EXTMEM1 p1Samples[BS NBL] all received parity 1 samples short 2 BS NBL

EXTMEM2 p2Samples[BS NBL] all received parity 2 samples short 2 BS NBL

EXTMEM2 xOut[BS NBL / 16] binary x estimate from decoder short BS NBL / 8

EXTMEM2 goldData[BS NBL / 16] source x data from encoder short BS NBL / 8

Total: (11/4) NBL BS
9
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C. Computation

The computational complexity of the Turbo Decoder is dominated by the MAP dec
implementation. Specifically, the alpha, beta, and gamma metrics must be computed for
stage in the block. Therefore, the performance of these three computations limit the speed
decoder.

1. Gamma Computation

The gamma metric stores the result of the computation. For the 
encoder that was chosen for this implementation, there are 4 possible received symbol seq
These sequences are shown in Table IV. Because the TMS320C6201 has a 4 cycle memo

and to save valuable internal data memory resources, it was decided that incorporating the
calculations into the alpha and beta computation routines was the most efficient implemen
Table IV shows that the gamma calculation actually only requires one computation. Redun
calculating the one computation turns out to be more efficient than storing the data to mem

2. Alpha/Beta Computation

The alpha and beta computation routines implement the computation given in (1) an
respectively. The summation that is given in (1) represents the addition of the branch met
multiple branches entering a given state. Taking the natural log of this sum is computati
expensive. The simple approximation is made to circumvent the natural log computation.
assume that in most cases , then we can approximate the exponential adder a
magnitude comparison:

(4)

This approximation yields good performance, with a slight coding loss of about 1/2
Implementing the LOG MAP decoder, which does not use the approximation shown above
require a look-up table. The following shows the forward recursive calculation of one 
metrics at a given stage, taking advantage of the TMS3206X's _sadd intrinsic function which
computes a saturated add. The beta calculations are similar, except the recursion is bac

Table IV. Branch metrics. 

Sequence

X P Branch Metric

0 0 0

0 1

1 0

1 1

1 D
2+( ) 1 D D

2+ +( )⁄

Λ pi( )
Λ xi( )

Λ xi( ) Λ pi( )+

A B»

e
A

e
B+( )ln MAX A B,( )≈
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which changes the gamma metrics' assignment to the state metrics.

/** convert operands to (int) and saturated add - more efficient*/

/** this is our one gamma calculation */

g = _sadd(Lest[iStage-1]<<16, Lp[iStage-1]<<16);

/** i1 is one branch, i2 is the second branch entering a state */

i1 = *(Aptr+jStageAlpha-4+0)<<16;

i2 = _sadd(*(Aptr+jStageAlpha-4+2)<<16, g); /* g21 */

/** our approximated ln[exp(i1) + exp(i)] */

*(Aptr+j+0) = (short)(_VMAX(i1, i2)>>16); /*~ ln[exp(i1) + exp(i)] */

3. Information LLR Calculation

Calculation of the log-likelihood ratios involves the implementation of (3). T
approximation for the log-add given by (4) is again utilized here. The following code illust
the calculation of the  LLR from the alpha's and beta's (Aptr and Bptr, respectively).

/** Our one gamma calculation */
g = Lp[i]<<16; /*g21, g01*/

/* calc 1's LL */

LL1 = _VMAX(_sadd(_sadd(*(Aptr+j+0)<<16,g),*(Bptr+j+1)<<16),

_sadd(*(Aptr+j+1)<<16,*(Bptr+j+2)<<16));

LL1 = _VMAX(LL1, _sadd(_sadd(*(Aptr+j+2)<<16,g),*(Bptr+j+0)<<16));

LL1 = _VMAX(LL1, _sadd(*(Aptr+j+3)<<16,*(Bptr+j+3)<<16));

IV. PRELIMINARY PERFORMANCE RESULTS

The performance of the decoder was measured in bit-rate and coding gain. The coding
the decoder matches the statistics discussed in [3] and is not discussed here. In this se
give the test results of the bit-rate for the implementation.

A. Bit-Rate

Several strategies were employed to increase the overall bit-rate of the decoder. A few o
strategies were particularly successful in increasing the overall throughput. Table 4 gives b
performance for several strategies.

1. Integrated gamma calculation

A method was presented that involved the calculation of the branch probabilities, also re

Table V. Bit-rate performance results for different implementations.

Method  clocks/MAP decode  bps/iteration

Dedicated gamma calculation 136,700 88,000

Integrated gamma calculation 61,268 196,000

Integrated gamma/flat arrays 42,000 286,000

x 1=
11
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to as the gamma calculations. In the dedicated gamma calculation method, fun
independently calculate all of the gamma calculations for the entire trellis, and store th
memory. As shown in Table IV, the gamma calculation actually only requires one comput
the rest of the operation is a simple reassignment of variables. Due to the high cost of m
accesses a separate gamma calculation is very inefficient. Alternatively, the gamma calc
can be pulled into each of the alpha and beta calculation functions. This saves the pro
numerous memory accesses per iteration, at the cost of only two redundant computati
branch computation in which the information and parity bit are both one must be done in the
calculation, the beta calculation, and information LLR calculation independently). As show
Table V, the integration of these calculations leads to a considerable performance improvem
over 100. 

2. Integrated gamma/flat arrays

The variables that store the alpha, beta, and final information estimate are each 
dimensional arrays. It was discovered that the compiler is not very efficient in computin
pointer addresses for the array accesses. Since the array accesses are sequential in n
compiler can be helped along if the programmer flattens the arrays into one-dimensio
manually increments the indexes rather than relying on the compiler to make eff
computations. this enhancement further improves the bit-rate by about 33%.

V. CONCLUSION

The purpose of this paper is to present the results of investigations in the implementa
Turbo-Decoding algorithms on hardware architectures. We show that on the TMS320C
fixed-point DSP, a common DSP architecture, that decoders for codes of block sizes on th
of 2000 information bits can be implemented just using the DSP alone. Much larger block
can be implemented using peripheral memory. In fact, decoders with block sizes on the o
512,000 information bits can be implemented on the EVM architecture. For dec
implemented on the DSP's internal memory space, bit-rate performance as high as 286,0
second/iteration can be achieved. Though the C-code for this specific implementation
advantage of the TMS320C6x's specific architecture, implementations that are writt
processor-specific assembly code should be able to achieve bit-rates that are significantly 
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