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Abstract In this paper, we describe some important issues and our progress in implementing a
Turbo decoder on the TMS320C6201 programmable DSP. Furthermore, we describe some
advancements that might make a Turbo decoder implementation on the C6x more efficient.
Benchmarks for evaluating the performance of hardware implementations are featured, as well as
performance results for efficient implementations on the Texas Instruments TMS320C6201 fixed
point DSP.

I. INTRODUCTION

Turbo codes are being proposed for the 3rd generation wireless standard known as 3GPP [2].
In this paper, we describe an implementation of the Turbo decoder algorithm in a C6x along with
important implementation issues. The issues include normalization, a stopping criteria, trellis
termination, etc.

The parallel-concatenated Turbo encoder takes the form as shown in Figure 1 [2]. The
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Figure 1. Parallel concatenated Turbo encoder.

information vectorx is input into a recursive systematic convolutional code (RSCC) and an
interleaved version of it is input into a second RSCC encoder. The Turbo encoder output vectors

X, p,, andp, are all binary, i.e. have components drawn ffonil} . We assume that the
modulator is binary and implements the mappiog= 2b—1 wherg {0, 1} and
cO{1,-1}. Furthermore, we assume that the channel noise is AWGN with pm%ver . Then

each measured component is given by a Normal distribution with conditional fiiean and
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conditional variances® . Let the measured vectors be denmoterh , p.Land
converted into log-likelihood ratios (LLR) by scaling by the fa@oo”
A(p,) denote the measured vectors in LLR form.

The standard Turbo decoder algorithm is shown in Figure 2 [2]. The parity LLR vectors are
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Figure 2. parallel concatenated Turbo decoder.

input into two different MAP decoders amdx)
each MAP decoder. The result is an algorithm that iterates around a loop which successively

refines the estimate of the information vector until convergence is reached.

. These are easily

iIs combined with an extrinsic vector prior to
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A simpler form for the Turbo decoder is shown in Figure 3. Here each MAP decoder estimates
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Figure 3. Simplified Turbo decoder.

the extrinsic vectors directly. This direct measure of the extrinsic vectors is achieved with a slight

complexity reduction in the MAP decoder and it also eliminates the subtraction at the output of

each MAP decoder shown in Figure 2. This version of the decoder is also more inherently stable
when using fixed-point numbers.

MAP Decoder:

The MAP decoder requires that two sets of state metrics be computed, one using a forward
recursion through the trellis, t/&(j)  metrics, and one using a backward recursion through the
trellis, theB;(j) metrics.

Specifically, theA;(j) metrics are computed using the forward recursion

Ai(K) = In{exp[A;_1(o) * Ti(io K] +explA_1(1) + (i1, K} 1)
wherej, and, are the states at stagéd that join tokstditeellis stage. This recursion is
initialized by

: O 0,i=0
Agi) = O
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where an index of = 0 refers to the all zero state. SimilarlyBtiig metrics can be computed
by the backward recursion

Bi_1()) = In{exp[B;(ko) + Ii(j. ko)] + exp[B;(ky) +T;(j, k1)1} (2)

wherek, andk; are the states at stageat join to statg at trellis stagei —1 . The initial
conditions are

_ 00j=0
-By(i) = O
[0, else

For arate 1/2 RSCC, tHg(j, k)  metrics are given by
MG, k) = xA(X) +pA(p;)

wherex;, p; {0, 1} and wherg, refers to a componenppf p.or . Finally, the extrinsic
output is given by

W= g S explA )+ pAM) + B0 ©
E},kl]xi:1 5
U . U
—-Ing explA; _1(j) + pA(p;) + B;(K)] E

q,kaizo

whereW, andp; refer to the extrinsic and parity associated with the same MAP decoder. We note
that there are always the same number of branches associated with each summation. Therefore,
any constant offset associated with either the alpha or beta metrics for a give set of trellis states
will subtract out.

II. TURBO DECODER ISSUES

There are two issues associated with a practical implementation that we briefly discuss: (1)
state metric normalization, and (2) a stopping criteria.

A. Normalization

As the state metrics are successively computed for the forward recursion, a positive bias
becomes apparent. This is a problem if a number representation is used that limits the dynamic
range, such as fixed-point numbers. Since the calculatiolVfor is not affected by a constant
offset for the alpha metrics at a given set of state metrics, the alpha metrics can be normalized by
subtraction by a constant for that state. A similar observation is made for the beta metrics. For the
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it stage, then, the normalizing constant is
C = Max{A;(k) ;k=0,1,...,S-1}

whereS is the number of states in the trellis per stage.

B. SNR Stopping Criteria

A second issue deals with the iterative nature of the decoder. The bit-error rate (BER)
associated with the output of the Turbo decoder after each complete iteration reaches a point of
diminishing returns (convergence). Moreover, the BER at a given iteration varies widely for each
received codeword. Most of the received codewords will converge after just 2 or 3 iterations,
while a small percentage of codewords require 8 or more iterations to converge. Since the number
of decoder iterations directly relates to latency (and complexity if it is defined in terms of total
operations), then it is desirable to reduce dleragenumber of iterations required for Turbo
decoding. We introduce a simple method for terminating the iterative process in the Turbo
decoder that involves measuring the signal-to-noise ratio (SNR) of the extrinsic information at the
output of each MAP decoder. When the SNR exceeds some predetermined threshold, the
iterations are stopped.

It is well known [2] that the extrinsic components become conditionally Gaussian as the
Turbo decoder iterates. This suggests that the BER associated with the extrinsic vector can be
determined using the standard Q-function. In fact, the argument of the Q-function can be related
to an extrinsic SNR. The standard relationship between SNR and the BER of a BPSK modulation
scheme is

Pw(€) = Q(/SNRy)

where P,\(€) is the error probability associated with the extrinsic véttor  Shti), is the
corresponding extrinsic SNR.

The SNR,, can be empirically determined from the components by

SNRy = =3
Ow
where
N-1

1
Mw = § 2 W
i=0
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and

Although the extrinsic components are not very Gaussian prior to convergence, this is exactly the
situation whereSNR,,, is small and, therefore, is not of concern. From a complexity standpoint,
the mean and variance calculation given above can be done as the extrinsic components are being
calculated and do not constitute a significant amount of additional complexity.

To illustrate the virtue of this approach, the histogram of the extrinsic components were
plotted for a Turbo code using 4-state RSCC and a blocklength of 120. The result, given in Figure
4, shows that the extrinsic vector diverges rapidly at some particular iteration. This divergence
also corresponds to the iteration where no errors in the decoded vector occur. The following table
illustrates the typical trend for a specific received codeword which resulted in no decoded errors
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after iterating 5 times.
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Figure 4. Historgram of the an extrinsic vector

The following table gives actual performance results for the same Turbo code with 4-state
constituent RSCC and for 3 different thresholds. The table clearly shows that there is a

Table I. SNR stopping criteria results.

Threshold = 25 Threshold = 10 Threshold =5
# Decoder | Ave. Iterations | #Decoded | Ave. Iterations | #Decoded| Ave. Iterations

Ep/Ng Errors per Block Errors per Block Errors per Block

0 7865 4.902 7861 4.697 7873 4.538

1 1336 4.372 1336 3.609 1361 3.161

15 396 3.858 398 2.942 442 2.460

2 94 3.348 94 2.444 141 2.002

25 30 2.865 30 2.087 104 1.595

3 0 2.506 4 1.806 74 1.288

performance trade-off of # iterations vs. the decoded BER that is a function of the SNR threshold.
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The threshold of 25 gave rise to performance that was nearly identical to the performance with a
full number of iterations but resulted in about half the number of average iterations for
E,/N, = 3dB. We also observe that for low SNR, the decoder iterates the full number of times
regardless of the threshold. Clearly, the threshold should be set according to the designed SNR.

[ll. TMS320C6201 IMPLEMENTATION

This section describes our C6x implementation as it currently stands. This is an ongoing effort
and our future interests will be focused on implementing the stopping criteria and in streamlining
the implementation to maximize the data throughput rate.

A. Development and Test Environment

The hardware and software environment used to implement the Turbo Decoder consisted of
an evaluation module provided by Texas Instruments and a software development environment
provided by GO DSP. All hardware used in the development was on the TMS320C62001 EVM
(evaluation module). The primary hardware resources that were used in the decoder
implementation are:

» TMS32062001 fixed-point digital signal processor with a maximum clock frequency of
200MHz.

* 64k bytes of internal program memory running at system clock speed of 200MHz.
* 64k bytes of internal data memory running at system clock speed.

* 8M bytes of SDRAM located on the EVM running at 100MHz maximum clock frequency
(systemclockspeed/2). The SDRAM was used to store the sample data and post processing
of the decoded data to gather error statistics.

The limited memory resources of the hardware and the desire for high throughput demand the
judicious use of memory and computational resources. Fortunately, careful storage and memory
re-use allowed for maximum throughput for block lengths up to 2000 information bits using only
the DSP's internal data memory for storage of all computation. For applications requiring more
memory, the external SDRAM could be used to allow block sizes as long as 512,000 information
bits but result in a throughput reduction.

B. Memory Organization

All memory resources are accessed via the TMS320's on-board DMA controller. The
TMS320C6x compiler allows flexible mapping of the memory resources. A memory model is
first selected in order to divide the memory up into regions that characterize the size and speed of
the memory. The memory model used for the Turbo Decoder implementation is shown in Table II.
The fastest memory regions are the internal program memory (IPM), and internal data memory
(IDM). The IPM stores the actual DSP executable code. The IDM stores the stack, local variables,
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and any variables that require high-performance memory. The remaining memory regions are the
slower external memory. Table Il shows how the various program variables are assigned to
memory regions. Most of the region assignments are fairly general. However, the decoder
working memory, sample data, and error statistics section assignments were made due to the
program's requirement for performance during certain variable accesses. The Turbo decoder's
working memory is assigned to the IDM for high performance, while all post-processing memory
is assigned to the slower memory regions.

Table 1. Memory Model Used for the Turbo Decoder Implementation

Length Length
Memory Type Origin (Hex) (Hex Bytes) (Hex Bytes) Type
INTPROG 0x00000000 0x010000 64k IPM
INTDATA 0x80000000 0x010000 64k IDM
EXTMEMO 0x00400000 0x040000 256k SBSRAM
EXTMEM1 0x02000000 0x400000 aM SDRAM
EXTMEM2 0x03000000 0x400000 aM SDRAM
Table Ill. Decoder Memory Section Assignments
Region Variable Description Type Size
INTDATA IMAP[BS] Interleaver map ushort 2BS
INTDATA IMAPUI[BS] Deinterleaver map ushort 2 BS
INTDATA LxAD[BS] received x sample short 2BS
INTDATA Lp1AD[BS] received parity 1 sample short 2 BS
INTDATA Lp2AD[BS] received parity 2 sample short 2 BS
INTDATA Lext1[BS] MAP dec. 1 extrinsic data short 2BS
INTDATA Lext2[BS] MAP dec. 2 extrinsic data short 2BS
INTDATA A[BS][NS] Alpha calculations short 8 BS
INTDATA B[BS]INS] Beta calculations short 8 BS
INTDATA numErrors Post-processing data unsigned 4
Total: 30BS +4
EXTMEM1 | xSamples[BS NBL] all received x samples short 2 BS NBL
EXTMEM1 | pl1Samples[BS NBL] all received parity 1 samples short 2 BS NBL
EXTMEM2 | p2Samples[BS NBL] all received parity 2 samples short 2 BS NBL
EXTMEM2 | xOut[BS NBL / 16] binary x estimate from decodef  short BSNBL/8
EXTMEM2 | goldData[BS NBL /16]| source x data from encoder short BS NBL /8
Total: (11/4) NBL BS

BS = interleaver size

NS = Number of encoder states
NB = Number of branches from a state
NBL = Number of blocks
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C. Computation

The computational complexity of the Turbo Decoder is dominated by the MAP decoder
implementation. Specifically, the alpha, beta, and gamma metrics must be computed for every
stage in the block. Therefore, the performance of these three computations limit the speed of the
decoder.

1. Gamma Computation

The gamma metric stores the result of the computation. Fo(]IheDz)/(l +D+ D2)
encoder that was chosen for this implementation, there are 4 possible received symbol sequences.
These sequences are shown in Table IV. Because the TMS320C6201 has a 4 cycle memory fetch,

Table IV. Branch metrics.

Sequence
X P Branch Metric
0 0 0
0 1 A(py)
1 0 A (X;)
1 1 A(X) + A (p;)

and to save valuable internal data memory resources, it was decided that incorporating the gamma
calculations into the alpha and beta computation routines was the most efficient implementation.
Table 1V shows that the gamma calculation actually only requires one computation. Redundantly
calculating the one computation turns out to be more efficient than storing the data to memory.

2. Alpha/Beta Computation

The alpha and beta computation routines implement the computation given in (1) and (2),
respectively. The summation that is given in (1) represents the addition of the branch metrics for
multiple branches entering a given state. Taking the natural log of this sum is computationally
expensive. The simple approximation is made to circumvent the natural log computation. If we
assume that in most casés» B, then we can approximate the exponential adder as just a
magnitude comparison:

In(e™ + €%) = MAX (A, B) (4)

This approximation yields good performance, with a slight coding loss of about 1/2 dB.
Implementing the LOG MAP decoder, which does not use the approximation shown above would
require a look-up table. The following shows the forward recursive calculation of one alpha
metrics at a given stage, taking advantage of the TMS320&4dd intrinsic function which
computes a saturated add. The beta calculations are similar, except the recursion is backwards,

10
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which changes the gamma metrics' assignment to the state metrics.

/** convert operands to (int) and saturated add - more efficient*/
/** this is our one gamma calculation */

g = _sadd(Lest[iStage-1]<<16, Lp[iStage-1]<<16);

/** il is one branch, i2 is the second branch entering a state */

i1 = *(Aptr+jStageAlpha-4+0)<<16;

i2 = _sadd(*(Aptr+jStageAlpha-4+2)<<16, g); /* g21 */

[** our approximated In[exp(i1) + exp(i)] */

*(Aptr+j+0) = (short)(_VMAX(i1, i2)>>16); /*~ In[exp(il) + exp(i)] */

3. Information LLR Calculation

Calculation of the log-likelihood ratios involves the implementation of (3). The
approximation for the log-add given by (4) is again utilized here. The following code illustrates
the calculation of th& = 1 LLR from the alpha's and beta's (Aptr and Bptr, respectively).

/** Our one gamma calculation */

g = Lp[i]<<16; /*g21, g01*/

[*calc 1's LL */

LL1 = VMAX(_sadd(_sadd(*(Aptr+j+0)<<16,9),*(Bptr+j+1)<<16),
_sadd(*(Aptr+j+1)<<16,*(Bptr+j+2)<<16));

LL1 = _VMAX(LL1, sadd(_sadd(*(Aptr+j+2)<<16,g),*(Bptr+j+0)<<16));
LL1 = VMAX(LL1, _sadd(*(Aptr+j+3)<<16,*(Bptr+j+3)<<16));

IV. PRELIMINARY PERFORMANCE RESULTS

The performance of the decoder was measured in bit-rate and coding gain. The coding gain of
the decoder matches the statistics discussed in [3] and is not discussed here. In this section we
give the test results of the bit-rate for the implementation.

A. Bit-Rate

Several strategies were employed to increase the overall bit-rate of the decoder. A few of these

strategies were particularly successful in increasing the overall throughput. Table 4 gives bit-rate
performance for several strategies.

Table V. Bit-rate performance results for different implementations.

Method clocks/MAP decode bps/iteration
Dedicated gamma calculation 136,700 88,000
Integrated gamma calculation 61,268 196,000
Integrated gammal/flat arrays 42,000 286,000

1. Integrated gamma calculation

A method was presented that involved the calculation of the branch probabilities, also referred

11
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to as the gamma calculations. In the dedicated gamma calculation method, functions
independently calculate all of the gamma calculations for the entire trellis, and store them to
memory. As shown in Table 1V, the gamma calculation actually only requires one computation,
the rest of the operation is a simple reassignment of variables. Due to the high cost of memory
accesses a separate gamma calculation is very inefficient. Alternatively, the gamma calculation
can be pulled into each of the alpha and beta calculation functions. This saves the processor
numerous memory accesses per iteration, at the cost of only two redundant computation (the
branch computation in which the information and parity bit are both one must be done in the alpha
calculation, the beta calculation, and information LLR calculation independently). As shown in
Table V, the integration of these calculations leads to a considerable performance improvement of
over 100.

2. Integrated gamma/flat arrays

The variables that store the alpha, beta, and final information estimate are each multi-
dimensional arrays. It was discovered that the compiler is not very efficient in computing the
pointer addresses for the array accesses. Since the array accesses are sequential in nature, the
compiler can be helped along if the programmer flattens the arrays into one-dimension and
manually increments the indexes rather than relying on the compiler to make efficient
computations. this enhancement further improves the bit-rate by about 33%.

V. CONCLUSION

The purpose of this paper is to present the results of investigations in the implementation of
Turbo-Decoding algorithms on hardware architectures. We show that on the TMS320C6201
fixed-point DSP, a common DSP architecture, that decoders for codes of block sizes on the order
of 2000 information bits can be implemented just using the DSP alone. Much larger block sizes
can be implemented using peripheral memory. In fact, decoders with block sizes on the order of
512,000 information bits can be implemented on the EVM architecture. For decoders
implemented on the DSP's internal memory space, bit-rate performance as high as 286,000 bits/
second/iteration can be achieved. Though the C-code for this specific implementation takes
advantage of the TMS320C6x's specific architecture, implementations that are written in
processor-specific assembly code should be able to achieve bit-rates that are significantly higher.
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