DSPsin Teaching Embedded Systems

Dr. AnitaM. Flynn
MicroPropulsion Corp., Berkeley, CA
aflynn@micropropulsion.com
Visiting Professor, UC Berkeley Mechanical Engineering, '99-00

INTRODUCTION

This past academic year | taught
two courses in Mechanical Engineering
at UC Berkeley, in which | incorporated
DSPs.

The Fall '99 course was
ME102B - Senior Design. All
mechanical engineering undergraduate
programs in the US must now have a
senior design experience/course for
accreditation. Prior to last Fall,
ME102B was entiredly mechanism
design, and some semesters, it wasjust a
paper exercise. The department wanted
to upgrade ME102B into a year-long
“Smart Machines” design sequence,
which would teach the senior class not
only mechanical design but aso
microprocessor ~ control of their
machines. The Fall 99 semester was a
first attempt at incorporating electronic
and software components into the
teaching of mechanical design at the
undergraduate level.

The Spring '00 course was a
graduate course which | put together
called Design of Embedded Systems,
ME235. Here, | went “under the hood”
and taught more electronics and less
mechanics, giving the students a
complete foundation in digital
electronics using FPGASs, quite a bit of
analog and power electronics, and aso
extensive exercises in real-time control
using interrupts.

Both courses had very large find
projects (actually, starting nearly from
day one) in which the students had to
dream up their own inventions and then
go off and implement them. Also, both
courses had final shows, or “Open
Houses’ which lasted six hours, during
which the public could wander around to
various stations to talk to the students,
see their projects and witness live
demonstrations of the projects working.

Neither course actually focused
much on DSP as it is traditionally taught.
Also, neither course had a written final
report requirement. However, the
students in ME235 were required to
“hand in” a web page, complete with
videos of working projects, schematics,
layouts, and code in lieu of a paper
report. The project web pages can al be
found from the course URL.:
http://www.me.berkel ey.edu/M E235

DSPsIN SENIOR DESIGN

| co-taught the Fall 99 ME102B
course with Prof. H. Kazerooni, who had
been in charge of the course for a
number of years. We taught one section
of ME102B with this new material,
roughly 45 students. Our goa for this
new course was to add material on
microcontrollers to give the students
exposure to computer-controlled electro-
mechanical systems. We taught bearings

and pulleys, and brushed/brushless
motors as usual, but had to cut out some
of the traditional gear tooth design, etc.,
in order to incorporate the basics of
digital controllers, A/D converters and
power electronics for DC-DC converters
and motor drives. When the course
becomes a year-long sequence, more of
the mechanical design will be put back
in. Nevertheless, al the students had to
go through some basic machine shop
training, make 3-D drawings of their
designs using SolidWorks or IronCAD,
and then go into the shop and build their
mechanisms before they added their
controllers.

Where do DSPs come in?
Essentially, | was looking for some
decent software and found it a a TI
booth at a trade show in Silicon Valley.
As a staff scientist and graduate student
at the MIT Mobile Robotics Lab, | had
spent years debugging embedded
systems and interrupt-laden assembly
language code with one blinking LED.
That type of debugging just wasn’t going
to be viable if we were to be successful
in pulling together this new course.

In the Fall of the previous year,
around September '98, | had seen a
demonstration of Code Composer Studio
running its Execution Graph window. A
picture is worth a thousand words and
that one real-time graph of interrupt
processes running would be a perfect
teaching tool, | thought. Interrupts are
hard to explain to someone who doesn’t
know anything about microcontrollers —
and they’re even harder to debug.

| did some consulting later that
year using the 6201 EVM and when |
took the Visiting Professor position at
Berkeley the next Fal, | went to TI's

DSP Fest to see if they might have some
development kits that would be useful
for students doing embedded projects.
While an EVM could theoretically run
outside of a PCI dot, the emulator cable,
at $4000, was far too pricey to be viable
in a classroom situation. The Tl ‘24x
series of processors were small, cheap
and some third-party ‘24x boards could
be embedded — but Code Composer
Studio didn’t run on the * 24x processors.
Interestingly, after badgering enough TI
folks about this dilemma, | found that
the 6211 DSK would shortly be out with
a paralel port emulator cable — but not
in time for the Fall 99 ME102B course.
What | did find was DMC Pro for the
‘24x by Technosoft, a Tl third party
member. Technosoft also sold small
‘24x boards which did not require an
expensive emulator cable but could
instead be downloaded via a seria port.
Technosoft's DMC Pro software, while
not able to communicate debugging
information in real-time, could log data
to internal RAM in real-time and then let
you play it back later. DMC Pro came
complete with graphing utilities for data
and it looked like a fantastic teaching
tool. We went with Technosoft, their
MCK?243 boards and DMC Pro for
ME102B.

Our experience with Technosoft
and their hardware and software was
great. They provided excellent support,
and plenty of code examples. One piece
of technology was still missing however.
We needed some power electronics for
driving motors. A commercial drive for
a motor could cost several hundred
dollars, clearly not feasible for a class of
45 students. Fortunately, Frank Cheung,
a Ca aum and former student of mine
from a class | had taught in Electrical
Engineering a few years earlier, offered

to design and lay out some dual, 7 amp,
H-bridge drivers for our course. We had
20 copies of these boards fabricated.

The students final projects,
mostly done in groups of three, spanned
a wide spectrum of problems critical in
the lives of 21 year-olds. One was a
machine for putting golf balls on a tee
automatically so the golfer would not be
required to bend down. (Tap your club
near the tee and the machine puts the
ball on the grass for an iron shot.)
Another was an automatic transmission
for a bicycle so the cyclist would not
have to pull the gearshift lever by hand.
Another project was a gecko feeder — so
the owner would not be forced to pick up
cockroaches individually and put them
in the gecko cage. Clearly, the world
will be a better place when this group
hits industry...

A number of projects involved
small mobile robots, either wheeled or
waking. One was a vacuum cleaner,
one was a sweeper, one was a wet-spot
detector, one was a miniature walker and
one was a cat toy. Another project was a
canon that could rotate and tilt to fire
marbles autonomously at a infrared
beacon acting as a moving target. A few
projects worked at higher power levels
and required the students to build custom
power electronics. Two of these projects
included one force amplifier based on an
RC car's internal combustion engine
linked to an electronic clutch, while the
other was an electronic timing valve for
a engine based on a custom solenoid
design.

A couple of problems stand out
from that first experimental semester.
First, the students didn’t know C, and we
didn’t have time to teach it. They had to

just figure it out. Most students had just
one prior programming course, which
was based on MATLAB. The second
problem was that 14 out of the 15 groups
blew up an H-bridge board at least once.
Interestingly, once the students figured
out C, they didn't have too many
problems with the DSPs and the
software. The ‘24x DSPs are basically
microcontrollers — they have on-board
A/Ds and PWM outputs. We gave the
students functions for reading the A/Ds
and for outputting PWM frequencies,
which was al they needed. They also
never had to use interrupts in any of their
projects. It would have been much
better however if the ‘24x processors
had more PWM channels and more
timers. These chips are geared towards
singlemotor applications such as
washing machines and are not quite the
right fit for robotics projects. However,
the DMC Pro software was excellent and
helped the students get through bugs
quickly. They could aso look at their
sensor data directly - and that saves so
much debugging time.

DSPsin Embedded Systems

The Spring '00 ME235 course,
Design of Embedded Systems, had a
different goal than the Senior Design
class. Because the ‘24x implementation
was not quite the right hardware or
software fit for ME102B, it seemed like
it would be useful to teach students how
to interface their own peripheras to a
processor that didn't have on-board
A/Ds or PWMs, but might have useful
software tools or other features. In the
end, the speed of the processor is not
important for most of these types of
applications — but the software
environment and debugging tools are.

By the time one has al the programming
done, there will probably be a faster
verson of the same processor out
anyway. It is more important to account
for al the time and money that is
invested in software development. A
software environment that will span
future generations of processors, plus
debugging features targeted specifically
for real-time applications are the most
critical concerns.

The 6211 DSK, which could run
the Code Composer Studio software,
became available just in time for the
Spring '00 semester (the 5402 DSK
came out later). It could run stand aone,
rather than in a PC chassis, due to an on-
board interface for JTAG control. That
feature made the boards cheap enough
for Tl to be willing to donate lots of
DSKs, and the students would be able to
embed these boards in their projects and
run them from the on-board flash.
Furthermore, while earlier DSKs had to
be programmed in assembly language,
the 6211 DSKs could be programmed in
C, which seemed essential for a one-
semester course.

However, the 6211 DSPs did not
have the on-chip A/Ds that the ‘24x
DSPs had, nor any provision for motor
control. | decided that | would teach the
students how to interface their own A/Ds
and how to memory map their own
digital 1/0 using an FPGA. That way,
they could have as many timers and
PWM generators as they wanted.
Because the 6211 DSK has a pair of
connectors for expansion of peripherals
onto a daughterboard, | centered the
fina projects around building a
daughtercard containing a Xilinx FPGA
and interfacing that daughtercard to the
DSK.

Twenty five students took the
course, 21 graduate students and 4
seniors. Most were mechanical
engineers, but two of the undergraduates
were from Materials Science and
Engineering Physics respectively. One
graduate student had an MD and had
completed his surgical training but was
going back to school to pick up a
master's in electrical engineering.
Another graduate student was from Bio-
engineering. Most of the mechanical
engineering graduate students were first
or second year students working on their
master’s degrees. Two were starting on
PhD theses. All of the students were
warned that the course would not only
be a course on real-time control, but also
would be areal-time sink.

If | had been teaching this course
in Electrical Engineering, | might have
expected the students to have some
background in digital logic, as most of
the juniors in EECS take CS150 —
Components and Design Techniques for
Digital Systems. CS150 spans digital
systems from MOSFETS, through gates
and combinationa logic, to finite state
machines and some introduction to
computer architecture. It's another time-
sink course, in that the course has 7 labs,
12 homeworks and a major final project
using a Xilinx FPGA (Spring '00 they
built a MIDI synthesizer for an
electronic keyboard).

However, none of the students in
my class had this background and even
if they wanted to, they could not have
taken CS150 because it is aways
impacted. | had never actually used an
FPGA either, but had done quite a bit of
digital design and computer architecture.
After discussions with Prof. Wawrzynek,

who was teaching EECS150, | decided
to copy CS150 exactly and make the
first half of my course the same as
CS150. He had all his lectures, problem
sets and labs online at:
http://www.eecs.berkel ey.edu/~cs150

| went to his lectures, then
regurgitated them to my class. | even
used his midterm. | set up the same labs,
borrowing 10 Xilinx 4005E FPGA
evauation boards from EECS and
getting another 10 donated by Xilinx.
We had our own lab in Mechanica
Engineering with scopes, power
supplies, etc., but no logic analyzers. |
borrowed 5 large logic analyzers and 10
handhelds from EECS and got Hewlett-
Packard to donate another 5 logic
anayzers.

In the first half of the course, we
followed aong CS150, but | dso
incorporated quite a bit of analog and
power electronics in the first two weeks
before CS150 got under full steam
(CS150 had 400 students). In addition, |
made my students, in a group class
effort, learn Orcad and lay out and ship a
daughtercard for the 6211 DSK by the
end of the first week of the term. Hence,
two weeks later, we had 20
daughtercards that contained a socket for
a Xilinx 4005E FPGA, along with plenty
of prototyping space for students to add
their own A/Ds, motor drivers,
connectors, etc.

In the second half of the semester
after they now knew everything there
was to know about basic logic design, |
veered off from the direction CS150 was
going (towards VLSl design and
internals of computer architecture,
pipelining, etc.) and went into memory-
mapped /O and interfacing peripherals

to a microprocessor. | went over
computer architecture at the level of the
instruction set and the programmer’s
model of a DSP vs. a genera purpose
Mi Croprocessor.

At this point, | then went into
real-time software, interrupt service
routines, booting from FLASH, software
interrupts, multi-tasking and variations
of schedulers. | had taken two of the Tl
workshops — one on the 6211 DSK and
the other on DSP/BIOS. Each came
with a copy of the lecture notes and a set
of software labs. We had done 5 of the
CS150 labs and so for the next 4 weeks,
| had the students do four of the TI labs.
These covered DSP/BIOS's rea-time
debugging tools and also some digital
filtering of voice signals.

However, the real emphasis from
day one was the final project. | had
students work in teams of two, although
three projects ended up being single-
person projects. Although the students
in my class did not have a background in
digital logic per se, most had a very deep
background in control theory and math.
| could speak about FFTs, frequency
responses, etc. and they were
comfortable with that. Two students had
even taken the senior level EECS course
in digital signal processing. All had
much more programming experience and
general debugging experience than the
seniors in the previous term’'s ME102B
course. One thing that helped was that
many of the mechanical engineering
graduate students had taken ME230 —
Real-time Applications of
Microcomputers, the previous term
which used C++ and the VentureCom
real-time extension to NT to learn about
schedulers, multi-tasking and structured
programming. It was soft real-time and

all hardware was abstracted away into
black boxes. Nevertheless, with that
background, after going through the
DSP/BIOS labs, the students were able
to do a tremendous amount of debugging
on their own in ther projects in my
course. | spent a lot of time in the lab
helping them with some of the nastier
bugs, but the Code Composer Studio
tools were an incredible help. The
Xilinx Foundation series software was
also indispensable in pulling this all
together. In addition, three groups went
further with Orcad and laid out complete
custom boards for their final projects,
either because they had surface mount
components, or they wanted to add
megabytes of extra memory, or because
they wanted a sturdier setup for ther
projects, which were also part of their
master’s theses. Most of the groups
though, used the original daughtercards
we had fabricated in the first week of the
teem, and smply wire-wrapped
additional components.

| was very impressed with the
level of sophistication of the projects the
students were able to reach in one
semester. Certainly, the tools available
today allow them to go much further
than what | was able years ago when |
was in their position. Again, the
students thought up their own projects.
All used the 6211 DSK and the Xilinx
4005E FPGA. Some projects used the
host-port interface on the DSK to bring
output up to the PC’'s monitor, while
other projects ran stand alone. Beyond
that, students found their own A/Ds or
other components required for their
projects.

One project was an MP3 Studio —
essentially a digital music mixer which
could handle four channels of music,

mix them and store the resultsin FLASH
for MP3 trandation. Another project
was a data glove where a person would
move their fingers and the system would
recognize the various finger positions,
printing out corresponding letters on the
PC’s monitor. In asimilar vein, another
project measured the height of a typist’s
wrists, for training purposes, to prevent
carpal tunnel syndrome.

One group worked on an
autonomous helicopter project that was
part of a research effort. They redid all
the electronics from an earlier version of
the autonomous helicopter, porting the
sensors and actuators from an embedded
PC to a 6701 board from TI third-party
member, D.SignT. They interfaced a
digital compass, an eight-channel A/D
for an inertial measurement unit and a
radio modem, then added an extended
Kahman filter to generate a more
precise estimate of the helicopter
position, velocity, etc.

Yet another project involved
internet-enabled devices controlled by
the electrica activity in a person’s
muscles. By flexing either the left or
right arm, the operator could turn a
camera mounted on a pan-tilt head,
which was located two computers away
on the internet. The intent is for a
paraplegic or otherwise disabled person
to be able to control appliances using
whatever muscles they still have. Along
those lines, another group built a smart
wheelchair, designed to be cheap and for
use in developing countries.
Consequently, they built their own motor
controllers and custom analog
electronics.

Another project focused
primarily on analog circuitry — a smart

battery charger for the UC Berkeley
Solar Car club. Thiswas a high-voltage
DC-DC converter, completely isolated,
with analog control loops for over-
voltage protection, short-circuit
protection, etc.

Two groups (rather, two single-
person projects) worked on force
feedback devices. One used a joystick
donated from Immersion Corp. that had
two potentiometers and two motors
inside, to create a 3-D flight simulator
video game where the joystick would
push back against the player's hand
whenever they crashed their plane into
an obstacle. The other force feedback
device was part of a master’s project that
used a more kinematically complicated
three degree-of-freedom joystick, built at
NASA, to create a sensation of feeling
the edges of a virtual sphere — both
inside and out.

The sole mobile robot project
was an RC car that the students modified
with custom power electronics and to
which they added their own voice
recognition algorithm — essentialy an
FFT and some filtering to parse three
verbal commands and a whistle, which
made the car go forward, turn, speed up
and stop.

Still another project included an
airplane wing roll controller. An optical
encoder measured the roll of the model
plane about an axis to which it was
mounted, a fan acted as a wind tunnel,
and servo motors actuated flaps on each
of the wings to keep the plane level
despite disturbances.

Another group was interested in
building their own digital camera from
scratch. They bought a CMOS image

sensor chip from Omnivision and
interfaced it to the DMA on the 6211
DSK and created a motion sensor for
security applications — that worked in the
dark.

Finally, one group of budding
rock stars created Air Drummer — a
virtual drumset in the same vein as Air
Guitar. An accelerometer in the
drummer’s hand, a bend sensor mounted
inside one elbow and touch switches
mounted on each foot produced signals
that they encoded into different
percussion instruments with different
beats and volumes — then played back
corresponding WAV files over a set of
speakers connected to the 6211 DSK’s
codec.

All together the workload for the
course encompassed 8 labs, 8 problem
sets and these final projects — along with
lots and lots of all-nighters. The course
was only allocated one teaching assistant
and so | did not have him bother to grade
homeworks, but rather had him focus on
getting the labs up and running and then
getting the students through the labs. |
spent quite a lot of time and personal
attention in the lab with each group in
the hopes of making as many projects as
possible successful. Twelve out of
fourteen final projects worked for the
full 6-hour Open House.

FEEDBACK

We found some silicon bugs in
the Tl hardware and ran into a few
software glitches, but Tl tech support
was exceptional. One bit of feedback for
Tl - amost al the students picked
Analog Devices A/Ds, because they
could get free samples from Analog
Devices web page without having to

make any phone calls. The price point
for the DSKs, at $195, was low enough
that three students bought them for their
personal use. Recently however, the
DSKs have doubled in price.

Also, if the Active X technology
in Code Composer Studio was better
documented or if a simple MATLAB
interface was available, that would make
quite a lot of headway in the educational
realm.

Finally, if Tl had an extremely
cheap, even low-end processor that
could run Code Composer Studio with
al of its beautiful real-time debugging
tools, and if the processor was cheap
enough for toys and had plenty of PWM
generators, the technology could be
brought down to the high-school and
hobbyist level for mass-market
education.

In that case, | can imagine a new
low cost DSK which would contain an
image sensor, an audio codec, a
programmable logic chip, and some
integrated H-bridges that would teach
young people not only about robotics,
but about the signal processing
technologies that go into creating higher
fidelity perception for the next
generation of artificial creatures.

| imagine having a plug-in for
Code Composer Studio that would
contain a set of lessons and
demonstrations of digital signal
processing and rea-time control
techniques. | can also imagine creating a
web page where hobbyists could go to
download new files for the
programmable logic chip if they wanted
more timers, PWM drivers, etc. to build

a twelve degree-of-freedom walking
robot, for instance. There could also be
add-on radio modules to buy, and
programs to download for the DSP that
would let the board communicate with
the broadband in-home wireless
networks that will soon be ubiquitous.
Then the robot could be controlled
remotely from akid’s browser.

Almost al of the microprocessor
based toys today use a 4-bit Sun Plus
processor which costs 15 cents. Next
generation toys, however, will be much
more sophisticated. If the toy
technology was based on a processor
platform which supported a Code
Composer Studio-like real-time software
environment, then there would be a
tremendous opportunity for education.

In the courses | taught this past
year, | took advantage of the declining
costs of DSPs due to the
communications industry. However, the
toy industry similarly pushes costs down
and the sensor/actuator interfaces for a
toy-focused DSP would be a better fit
for these classes in embedded systems
and real-time control.

After all, one of TI's first DSP
products was the Speak ‘n Spell toy. It
will be interesting to see what the next
generation of DSPswill bring.

	INTRODUCTION
	DSPs IN SENIOR DESIGN
	DSPs in Embedded Systems
	FEEDBACK

