
RZHU�8QOHDVKHG
Optimization Techniques using TI DSP.

Prepared By: IA India Group

Power Unleashed

Optimization techniques using TI DSP C55x

Abstract With increasing penetration of the Internet and availability of music in
compressed formats, Personal Internet Audio (PIA) players have carved their own niche in
the consumer electronics market. PIA players place a heavy premium on power consumption
because lower power consumption gives the user the benefit of more battery life. In this
paper, an advanced DSP architecture solution from TI is described, which enables the user
to reap the benefits of a highly parallel system. The TMS320C55x family has been tailor-
made for applications that require efficient algorithmic implementations, compact code
storage, and low power consumption. A case study is presented in this paper, based on
implementation of an audio decoder on the C55x DSP platform. Results indicate that due to
the optimisation levels achieved, the power consumption can reduce by as much as 50%
compared to other implementations. Further applications and improvements that can lead to
higher optimisations are described. Other value adding features of the TI solution are OEM
customisable security plug-ins, programmability for a number of different algorithms and
fast turnout times.

QWURGXFWLRQ
Within the last year, the popularity of
downloadable, compressed audio formats via
the Internet has skyrocketed. The top
requirement of the consumer has always been

high quality of music and long continuous playtime.
This paper discusses our efforts in using the power of
TI’s TMS320C55x DSP to offer an edge in high
quality music and extremely low power
consumption.

The organisation of this paper is as follows: A
description of the DSP platform for developing audio
devices is given, followed by details of the power
consumed by a typical audio player. Features of the
C55x which contribute to increased computing
efficiency as well as power efficiency are discussed
in the Technical features section, followed by a more
detailed discussion about the features in the
optimisation methods section. Two case studies are
presented next, which help us to understand how
these features can be applied in a decoder.

ODWIRUP�'HVFULSWLRQ
The target processor for development
was the C55x, TI’s low-power, 16-bit
fixed-point DSP.
For code development, the TI C5409

Internet Audio EVM, developed within the Internet
Audio Group at TI, was used. This board is a single
DSP design with a compact flash for holding music
and a user interface for controlling playback.
Support is provided for audio decompression, sample
rate conversion, graphic equalization, and digital
volume control. The DSP also handles user interface
operations and compact flash I/O.

, 3

6\VWHP�2YHUYLHZ

Flash
Card

Interface

Batteries

Voltage
Regulator

and
Monitor

C5000
Family
DSP

Manual
Input

Device

Stereo
DAC

Amplifier

Display

A typical solid state audio system utilizes a Texas
Instruments TMS320C5000 family digital signal
processor (DSP) as its processing engine and a
Compact Flash card for media storage. In the
system, the DSP responds to events from human
input devices and updates a display to provide visual
feedback to the user. When the user plays an audio
track, the DSP accesses the compressed audio
samples on the flash card, decompresses the samples
in its internal memory, verifies the digital
watermark, and passes the uncompressed audio
samples to a D/A. The analog signal is then fed
through the amplifier to drive stereo headphones.

RZHU�&RQVXPSWLRQ

This solid state audio player improves on
current portable players by offering
longer battery life, ruggedness, large

data capacity, and small size.

Battery Life

To compute the typical battery life of the system,
some assumptions about the flash operation must be
made. An uncompressed 48kHz, 16-bit data stream
is equivalent to a data rate of 1.526 Mbits/s. For
CD-quality audio, an MPEG-2 AAC compressed
data stream requires only 128kbits/s. The MPEG-2
AAC algorithm requires a new frame of less than

688 bytes every 43ms. Assuming the flash sleeps for
40ms, consuming 200µA, and is running for 3ms,
consuming 45mA, the average current would be
3.3mA (or 11mW).

Power Consumption for typical system.

SanDisk SDCFB-48-101
CompactFlash

11mW

Texas Instruments TMS320C5409 DSP 58mW
AKM AKM4350 DAC 8mW
Texas Instruments TPA152 Stereo
Amplifier

32mW

Densitron LM4012-TN 16x1 LCD Display 5mW
Device I/O 1mW
Voltage Regulators (80% efficiency) 23mW
Total 138mW

Table shows the power consumption for the individual
components in the solid state audio system. For a 3V
system, two “AA” batteries would be needed. For the
138mW system shown here, this would offer about 39
operating hours. For comparison, a typical CD player
consumes 600mW and operates for approximately 9
hours on 2 “AA” batteries.

 From the data we see that DSP is the most power
hungry component in IA system. The power
consumed by the DSP is proportional to the clock
frequency supplied to the DSP. Thus the challenge to
the software designer is to use very low MIPS for
decoding. Low MIPS in decoder will aid:

1. Low power consumption.

2. Spare MIPS for OEM customization.

3. Spare MIPS for adding new features like
equalizer.

HFKQLFDO�)HDWXUHV
The C55x DSP core’s low power/high
performance makes possible feature-
rich, miniaturized personal and portable
applications:

q Power efficiency for the mobile Internet –Cell
phones will evolve into mobile communicators
with Internet and televideo features.

3
7

q Low system cost to digitize new consumer
markets – More chips and functions for the
same power budget will transform consumer
products.

Key Features
Advanced power management and design: runs as
low as 0.05 mW/MIPS @ 0.9V, with performance
ranging from 140-800 MIPS.
Increased performance for tight power budgets. The
C55xTM DSP core will speed up development of
exciting new miniaturized applications. For
example, the C55x DSP core will make possible
Cochlear implants so small they may be completely
implanted in the ear, enabling people who are
profoundly deaf to hear again.

New instructions reduce code size, increase compiler
efficiency, cut power usage, and increase parallelism.
The processor also has advanced on-chip emulation
capabilities for debugging.

SWLPL]DWLRQ�PHWKRGV
The following features of C55x
provide the designer with a number of
methods to optimize DSP algorithms:

1. Multiple Buses
The C55x family has 3 Data Read buses, 2 Data
Write buses and 1 Program bus. With more
buses, and combined with instructions which
execute in parallel, more data can be accessed.
An example of how this can be translated to
more efficient programs can be seen below:
Consider the case where we have to do the
following tasks in a single cycle:

a. Transfer a double word from one
memory location to another example
where it is applicable in mp3decoder

b. Increment both auxiliary register
pointers, so that they point to the next
data location. Example in real life.

This can be accomplished by using the following
single C55x instruction.

MOV dbl(*AR6+), dbl(*AR1+) ; move a double
word

This instruction uses four buses in the processor
at the same time for effecting the transfer i.e.,
two simultaneous memory accesses are made for
both reading and writing.

2. Variable length instruction set
The instructions can have varying lengths,
ranging from one byte to six bytes (i.e. 8 bits to
48 bits). Accordingly, the program space in
C55x is byte addressable. This effectively means
that the processor allows the user to “pack”
more instructions into the memory, than say,
having a fixed length instruction set
This ultimately results in lesser code size.

3. Higher operating frequency
The C55x has operating frequency ranges upto
400 MHz. This results in fast execution of
instructions.

4. Pipeline Protection Unit
The Pipeline Protection Unit (PPU), allows for
faster execution of instructions in the user
program and also makes debugging easier
because failures due to pipeline conflicts cannot
happen. This makes it easier to program the
processor.

5. Separate access to data coefficients
A new register has been specially introduced for
accessing coefficients from data memory
locations. This register is functionally equivalent
to the auxiliary registers. This register, called
the Coefficient Data Pointer (CDP) can be used
in instructions, which simultaneously use two
coefficients say, in a Dual MAC instruction.
The CDP can be efficiently used when the same
coefficients are used in two separate output
calculations. To be specific, operations like
block FIR filters can be implemented using this
approach

6. Direct compare instructions

2

Some tasks involve a lot of conditional
processing using IF statements. In order to do
this we may have to compare a register value
with a value in a memory. In most cases, we
would be doing the following steps to
accomplish this:

a. Move the data memory value to a
register

b. Subtract or do some other operation to
see whether the condition is true or
false

c. Restore the value to the value before
comparison

d. Do the conditional task
It can be seen that if a number of conditions
have to be tested especially inside loops, the
overhead can be quite large. In view of this,
C55x provides a method of direct comparison of
the values from memory with a specific register.

7. Multiple Repeat options
Loops can be implemented in many ways in a
processor. Decrement-check for zero- and then
branch conditionally is one approach, or a C54x
compatible RPT instruction can be used. In
C55x, recognising the need for fast looping
instructions, a new instruction, RPTBLOCAL
has been added. This instruction takes less
number of cycles to execute than the standard
RPT instruction, and it can be used where the
number of words inside the loop fits within 38
words.

8. Parallel instructions
Usage of parallelism in the instructions can help
increase the efficiency of the programs. Apart
from the parallel instructions offered in the
earlier versions of the C5xx family, the C55x
also offers the possibility of making our own
parallel instructions. Thus the instruction set
becomes more flexible.

DVH�6WXGLHV
The following case studies reflect the
methods adopted for optimising the
MP3 decoder algorithms. The first case
study indicates the optimisation done

for implementing the MDCT algorithm on to the
C55x. The second case study indicates the results
achieved with the Synthesis Filterbank.

Case Study 1: MDCT Optimisation

The MDCT (Modified Discrete Cosine Transform) is
used in the MP3 decoder for frequency-time domain
transformation. The Fix-Point MDCT computes end
sub-band – start sub-band DCT outputs using matrix
multiply. This function is usually called once per
granule (of 576 samples) per channel and computes
all DCT outputs for each sub band2. (need more
explaination on link to support these jargons) In the
case of a mixed-block (low 2 subbands only are
LONG) this function will be called twice per granule
per channel. Computing all the DCT outputs inside
this function avoids function call overhead of calling
a single DCT function 32 times.

The pseudo-code for the function is as
below:

FixptMDCT(
FixPt *in, /* Input vector*/
int blocktype, /* Size: either 18 or 6*/
int start_subband, /* Beginning subband*/
int end_subband /* Ending subband*/
) {

if blocktype == SHORT_WINDOW
windows = 3;

else
windows = 1;

for (start sub-band to end sub-band)
 for (each window)

(Replace following with 2 for loops).
FixPtMatrixMultiply (input, DCTcoeff);

}

The main component of MDCT is a Fixed-Point
matrix multiplication whose order depends on
the size of the window, which can be either long
(18 samples) or short (6 samples). This
multiplication involves a product of two
fractional numbers, represented in Q31 format.
The conventional method of proceeding with

&

this is to have two nested for loops.

Considering the fact that for each 32 bit
fractional multiplication three 16-bit
multiplication instructions are required, the total
MIPS required for the matrix multiplication can
be calculated as follows:

Window type LONG
32b mults reqd 18*18

16b mults reqd 18*18*3
Total incldg
overhead

1230

MIPS @ 44.1 KHz 6.02

We have implemented the above algorithm in
C55x, and the core loop in assembly is as below.
(For the instruction set, refer to [3]). The code
uses the following important features of the
C55x processor for achieving reduction in MIPS
requirement:

a. Parallel instructions
b. Dual MACs
c. Nested loops
d. Concurrent usage of more temporary registers
e. Concurrent usage of more Accumulators
f. Less overhead in C-ASM calls
g. Faster local Repeat blocks
h. Logical optimisations
(need a psedo code or flow chart here. Let the code
be in appendix)
_MDCT55X:
BSET FRCT
BCLR C54CM:: AMOV #3,T1
BSET SXMD
;C54CM is set to make it to c55x mode
;After each block output is got to go to next block we need to go 3+36
;This is used as the outer loop count size/2-1 =8
; Should be changed depending on the value of size.
; Should be size/2-1
MOV T0, AC0 ; AC0 = T0
ADD AC0, #-1,AC0 ; AC0 = T0/2
MOV AC0-1, BRC0; for 6x6 change 8 to 2
MOV T0*2,T2
;This is the inner loop count. Size (18)-1=17
MOV T0-1, BRC1 ; for 6x6 change 17 to 5
;Allocate output memory pointer.After each inner loop
;Two long locations will be updated.
;Make ar2 and ar3 point to LSByte .That’s why adding 1
AMOV #(_x18DCT4+T0*2+1), XAR3
;for change 37 to 13
AMOV #(_x18DCT4+1),XAR2
MOV #(32*2),T0
RPTBLOCAL Outer-1
;For each outer loop CDP increments from 0 to 544
;steps of 32.So loop will be performed 18 times.
MOV #0,AC0 :: XOR AC1
MOV #0,AC2 :: XOR AC3
MOV XAR0,XCDP
RPTBLOCAL MyInner-1
MAC *AR2-,*CDP+,AC0
::MAC *AR3-,*CDP+,AC1
MAC *AR2,*CDP-,AC0
::MAC *AR3,*CDP-,AC1
MAC *(AR2+T1),*(CDP+T0),AC2
::MAC *(AR3+T1),*(CDP+T0),AC3
MyInner:
ADD AC0,-16,AC2 :: ADD T2,AR2
ADD AC1,-16,AC3 :: ADD T2,AR3
MOV AC2, dbl(*AR1+)
MOV AC3, dbl(*AR1+)
MyOuter:
RET

The comparison of the MIPS requirements for the
optimized code and the unoptimized code is as
below:

MDCT W/o using Special instructions C55x

MDCT

Initialize
start_subband, end_subband

Input and DCT Coeff.

If
Blocktype is SHORT

Windows = 3 else
Windows = 1.

 For each subband

 For each window

 For each row

 For each column

 Multiply row and column index of
Input and DCT Coef.

 End

MDCT

Initialize
start_subband, end_subband

Input and DCT Coeff.

If
Blocktype is SHORT

Windows = 3 else
Windows = 1.

For each subband

For each window

Repeat row/2
Repeat collumn

MAC input and DCTCoeff.

End

CLOCKS 1230 580
MIPS 6.02 2.84

The results show an improvement of about 52%
compared to an implementation, which does not use
the C55x features.

Case Study 2: FDCT Optimisation
FDCT (Fast Discrete Cosine Transform) (How about
similar discription as in mdct?) function is used to
calculate the fast Discrete Cosine Transform of the
given input signal, and is used in the Polyphase
Synthesis Filter Bank.
The features of C55x as applied in the MDCT
optimisation were used here, and the results are
given below:

FDCT W/o using Special instructions C55x
CLOCKS 1380 810
MIPS 3.87 2.27

The results show an improvement of about 41%
compared to an implementation, which does not use
the C55x features.

XPPDU\
This paper looks briefly at power
considerations in a typical Portable
Audio player, which has become popular
in the recent past. The TI TMS320C55x

processor fits into the requirements for a processing
device to be used in such applications, where
constraints on memory size, power, MIPS are
present. In this paper, we have introduced the
various features of the TMS320C55x processor.
Application of the features of the processor in an
MP3 decoder algorithm to achieve reduction in
processing power has been discussed. Utilising these
features can help implementers to save on MIPS and
hence on power.

HIHUHQFHV

1. "CPU Technical Brief - TMS320C55x
Digital Signal Processor Core" - Texas
Instruments technical brief #SPRT183

2. ISO MPEG Layer III standard CD 11172-3
3. "TMS320c55x Mnemonic Instruction set

Reference guide" - Texas Instruments
publication #SPRU374A

4. "Virtual Music Rocks" - A Forrester Research
Report, March 1999

6 5

