Research on Bandwidth Efficient Wireless
Communications: CPM

http://yara.ecn.purdue.edu/~cominfo/

Faculty: J. V. Krogmeier, S. B. Gelfand, M. D. Zoltowski
Students: H. Huh, T. Madapush, T. Pande, T. Simarmata

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285

. Communications Research Lab
Purdue University School of ECE




Overview

e Research on Continuous Phase Modulation.

— CPM background.

— Finite state machine model.

— MLSE.

— MAP symbol-by-symbol.

— Phase and frequency estimation.

— Coherent demodulation for frequency flat Rayleigh fading
channels.

— Symbol timing recovery.
e Investigations into the Bluetooth Standard.
e Summary of Project Status and Future Work.

e Purdue Course on Fixed Point DSP Programming.
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Continuous Phase Modulation (CPM)

e CPM is a nonlinear modulation with memory.
e CPM has a constant envelope.

— good for use with nonlinear power amplifiers.

— example: satellite communication.
e CPM has better spectral characteristics than MPSK.
— memory reduces spectral occupancy.
e Optimum detection of CPM is more complex than MPSK.

— memory increases complexity of receiver.

— usually sequence detection via Viterbi algorithm.
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Signal Model

e The (complex baseband) transmitted signal is:

s(t;:d) = VE/Texp{jo(t:d)}.

e Information is carried in the phase (nonlinear with memory):

t;d) = 2wh > dig(t —iT)

— h = 2m/p is the modulation index.
—d; e {£1, £3, ..., (M - 1)}.

—q(t) is called the phase response; normalized such that
q(t) =0fort <0, q(t)=1/2fort > LT.

— L called the memory of the CPM scheme.
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Phase Response and Phase Trellis
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e Parameters: 3RC, h =1/2 M = 2.

e Memory is used to control spectral occupancy. Memory intro-
duced through:

— Phase continuity (smoothness of ¢(t)).

— Pulse length parameter L.

e Optimum demodulation of CPM is complex because of mem-
ory and nonlinearity.
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Finite State Description

e For n > L the phase in the interval nT <t < (n+ 1)T is

n—L n

p(t;d) =7wh Y di + 2¢h Y dig(t —iT).
1=0 1=n—L+1
0

— For h = 2m/p, 0, takes at most p values
0, € {0,27/p,...,2(p — )7/p}.

e Phase in nT <t < (n+ 1)T is completely specified by

— Current symbol d,, and
— The state s, = (d,_1, ..., dy_141, 0,) € S.
—||S|| = pM* .
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On the Complexity of CPM

e Current CPM applications have been limited to very simple
schemes (MSK and generalizations) due to:

1. Implementation complexity which arises primarily in two
ways.
— Large number of states needed to describe a CPM signal
—> MLSE must operate on large trellis.
— Dimensionality of the signal space can be large esp. with

partial response or multilevel = Filter bank for com-
putation of demodulator metrics is large.

2. Synchronization difficulties.

— The standard low complexity approach is to pass the IF
signal through a non-linearity = Generates tones at
carrier and clock frequencies.

— Tones usually extracted by PLLs.

— However, method fails with smoothed frequency pulses
because amplitude of tones too small compared with
noise level.
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Demodulation of CPM

1. Maximum Likelihood Sequence Detection (MLSD).

e Computes MAP estimate of the symbol sequence via Viterbi
Algorithm.

e Complexity is O(pM?1).
2. Symbol-by-Symbol Detection (OSA).

e Produces soft decision metrics.

e Complexity is O(KpM*LT1).
3. Complexity reduction techniques.

e M-Algorithm.

e T-Algorithm.

e Reduced state demodulation.
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Complexity Reduction Techniques for OSA

e M-Algorithm.

— retains the largest M; sufficient statistics.
— must do a sorting operation.

— moderately variable complexity.
e T-Algorithm.

— retains sufficient statistics exceeding a threshold py.

— large variations in complexity:.
e Reduced state demodulation.

— demodulation occurs on a reduced modulation state.

— no variations in complexity.
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Basic Idea of Reduced State Detection

e CPM signal represented by a trellis S.
— number of states in trellis is ||S|| = pM*~1.
e A reduced state trellis S is considered instead.
e Partition original trellis to get a reduced state representation.

e Fach state in reduced trellis consists of one or more of the
original states.

—e.g., if ||[S]| = 64 can have ||S|| = 16 such that each state
in reduced trellis contains 4 of the original states.

e Partition such that FEuclidean distance between members in
the same state in the reduced trellis 1s maximized.

— same principle used for reduced state sequence detection by
Eyuboglu and Qureshi (1988).
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Block Diagram of the Recursions for RS-SOA
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BEP Performance

e RCpulse, L=3, M =4, h=0.5.
e Rate 1/2 code, constraint length = 2, 20 x 20 interleaver.
e Complexity of RS-SOA is 25% of OSA.

—a&— MLSD

—— RS-SOA, hard de
—4— OSA, hard decs |3
—@— RS-SOA, soft decqd]
- -0-- OSA, soft decs
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Phase Error vs. Time for OSA
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BEP vs. SNR for Various Algorithms
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Received Signal Model

e Complex baseband of the received waveform is

r(t)

where

— @ and 7 are carrier phase and timing epoch, respectively.
—w(-) is complex AWGN of spectral height V.

= s(t—7;d)e? + w(t)

_ ] % I +0(=T ] ()

e Filter and sample with free running clock

0 Anti-Aliasing
— > Filter
B~ 1/2Ts
= N/2ZT

X(t) | X,

tsample: kTS

— Sampling rate is 1 /Ty = N/T.
— Assume signal is not distorted by AAF:

T = /E/Tej[9+¢(kTs—T;Q)] +wp.
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Maximum Likelihood Estimation

Signal component {z;} depends upon:

— Transmitted symbols d.
— Carrier phase 6.

— Symbol timing epoch 7.

e We will assume:

— Symbols d are known (synchronization preamble).

— Carrier phase 6 is nuisance parameter.

e Thus seek data-aided and phase-independent ML esti-

mate of 7.

— If known preamble length is K symbols, define

XTZ [xo Ly - ZUNK—l}-

— Likelihood function:

| NE-1 7
A(x|0,7) = exp ~5 Z T — A /T61[9+¢(/€T3—T;Q)]
k=0

Communications Research Lab
Purdue University School of ECE

2

16



Maximum Likelihood Estimation(cont’d.)

e Simplify by dropping terms independent of 8, 7 get equivalent
likelihood function

1 |E

Ai(x10,7) = exp {; TRG

NK-1
L Z xkejcb(kTsT;d)] }

k=0

e Since 6 is nuisance parameter we may average it out of A1(x|6, 7)
by integrating against pdf of # (assumed uniform over (—, 7]).

e With X (7) déf fgvzfg_lxke_j(b(ws_“d), an equivalent likeli-
hood function is

No(x|7) = I ((712\/?|X<T>|) :

e Since [y(-) is increasing in the magnitude of its argument,
equivalent ML estimation problem for 7 is

7 = argmax_ | X (7).
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Examples of | X (7)

The Plot of [X(r, )] for M = 8, 2RC, h = 0.5, L = 30 symbols , SNR = 30 dB, T, = 0.2T
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The Plot of [X(t, 1)| for M = 16, 3RC, h = 0.25, L = 40 symbols , SNR =35 dB, T, = 0.5T
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Plot of RMS Error as
a Function of SNR

Plot of SNR vs Symbol Timing RMS Error for 1RC, h = 0.5 and lD: 40 symbols Plot of SNR vs Symbol Timing RMS Error for M = 4, RC, h =0 .5 and IU: 40 symbols
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Plot of RMS Error as
a Function of SNR

Plot of SNR vs Timing RMS Error for M =4, 1RC, h=0.5
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Plot of RMS Error as a Function
of Preamble Length

. Plot of Lo ( Symbol Length ) vs Timing RMS Error for 1RC, h = 0.5, and SNR = 25 dB 1o Plot of Lo vs Symbol Timing RMS Error for M = 4, RC, h = 0. 5 and SNR = 25 dB
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Plot of RMS Error as a Function
of Preamble Length

Plot of Lo ( Symbol Length ) vs Timing RMS Error for M = 4, 1RC, and SNR =25 dB
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