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Overview

• Research on Continuous Phase Modulation.

– CPM background.

– Finite state machine model.

– MLSE.

– MAP symbol-by-symbol.

– Phase and frequency estimation.

– Coherent demodulation for frequency flat Rayleigh fading
channels.

– Symbol timing recovery.

• Investigations into the Bluetooth Standard.

• Summary of Project Status and Future Work.

• Purdue Course on Fixed Point DSP Programming.
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Continuous Phase Modulation (CPM)

• CPM is a nonlinear modulation with memory.

• CPM has a constant envelope.

– good for use with nonlinear power amplifiers.

– example: satellite communication.

• CPM has better spectral characteristics than MPSK.

– memory reduces spectral occupancy.

• Optimum detection of CPM is more complex than MPSK.

– memory increases complexity of receiver.

– usually sequence detection via Viterbi algorithm.
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Signal Model

• The (complex baseband) transmitted signal is:

s(t; d) =
√
E/T exp {jφ(t; d)} .

• Information is carried in the phase (nonlinear with memory):

φ(t; d) = 2πh
∑
i

diq(t− iT )

– h = 2m/p is the modulation index.

– di ∈ {±1, ±3, . . . , ±(M − 1)}.

– q(t) is called the phase response; normalized such that
q(t) = 0 for t ≤ 0, q(t) = 1/2 for t ≥ LT .

– L called the memory of the CPM scheme.
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Phase Response and Phase Trellis
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• Parameters: 3RC, h = 1/2, M = 2.

• Memory is used to control spectral occupancy. Memory intro-
duced through:

– Phase continuity (smoothness of q(t)).

– Pulse length parameter L.

• Optimum demodulation of CPM is complex because of mem-
ory and nonlinearity.
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Finite State Description

• For n ≥ L the phase in the interval nT ≤ t < (n + 1)T is

φ(t; d) = πh

n−L∑
i=0

di︸ ︷︷ ︸
θn

+ 2πh

n∑
i=n−L+1

diq(t− iT ).

– For h = 2m/p, θn takes at most p values

θn ∈ {0, 2π/p, . . . , 2(p− 1)π/p} .

• Phase in nT ≤ t < (n + 1)T is completely specified by

– Current symbol dn and

– The state sn = (dn−1, . . . , dn−L+1, θn) ∈ S .

– ‖S‖ = pML−1.
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On the Complexity of CPM

• Current CPM applications have been limited to very simple
schemes (MSK and generalizations) due to:

1. Implementation complexity which arises primarily in two
ways.

– Large number of states needed to describe a CPM signal
=⇒ MLSE must operate on large trellis.

– Dimensionality of the signal space can be large esp. with
partial response or multilevel =⇒ Filter bank for com-
putation of demodulator metrics is large.

2. Synchronization difficulties.

– The standard low complexity approach is to pass the IF
signal through a non-linearity =⇒ Generates tones at
carrier and clock frequencies.

– Tones usually extracted by PLLs.

– However, method fails with smoothed frequency pulses
because amplitude of tones too small compared with
noise level.
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Demodulation of CPM

1. Maximum Likelihood Sequence Detection (MLSD).

• Computes MAP estimate of the symbol sequence via Viterbi
Algorithm.

• Complexity is O(pML).

2. Symbol-by-Symbol Detection (OSA).

• Produces soft decision metrics.

• Complexity is O(KpML+1).

3. Complexity reduction techniques.

• M-Algorithm.

• T-Algorithm.

• Reduced state demodulation.
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Complexity Reduction Techniques for OSA

• M-Algorithm.

– retains the largest Mt sufficient statistics.

– must do a sorting operation.

– moderately variable complexity.

• T-Algorithm.

– retains sufficient statistics exceeding a threshold pt.

– large variations in complexity.

• Reduced state demodulation.

– demodulation occurs on a reduced modulation state.

– no variations in complexity.
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Basic Idea of Reduced State Detection

• CPM signal represented by a trellis S.

– number of states in trellis is ‖S‖ = pML−1.

• A reduced state trellis S̃ is considered instead.

• Partition original trellis to get a reduced state representation.

• Each state in reduced trellis consists of one or more of the
original states.

– e.g., if ‖S‖ = 64 can have ‖S̃‖ = 16 such that each state
in reduced trellis contains 4 of the original states.

• Partition such that Euclidean distance between members in
the same state in the reduced trellis is maximized.

– same principle used for reduced state sequence detection by
Eyuboglu and Qureshi (1988).
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Block Diagram of the Recursions for RS-SOA
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BEP Performance

• RC pulse, L = 3, M = 4, h = 0.5.

• Rate 1/2 code, constraint length = 2, 20× 20 interleaver.

• Complexity of RS-SOA is 25% of OSA.
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Phase Error vs. Time for OSA
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BEP vs. SNR for Various Algorithms
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Received Signal Model

• Complex baseband of the received waveform is

r(t) = s(t− τ ; d)ejθ + w(t)

=

√
E

T
ej[θ+φ(t−τ ;d)] + w(t)

where

– θ and τ are carrier phase and timing epoch, respectively.

– w(·) is complex AWGN of spectral height N0.

• Filter and sample with free running clock

Anti-Aliasing
Filter

B    = 1/2T   
     = N/2T
aaf s

samplet s= kT

r(t) x(t) xk

– Sampling rate is 1/Ts = N/T .

– Assume signal is not distorted by AAF:

xk =
√
E/Tej[θ+φ(kTs−τ ;d)] + wk.
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Maximum Likelihood Estimation

• Signal component {xk} depends upon:

– Transmitted symbols d.

– Carrier phase θ.

– Symbol timing epoch τ .

•We will assume:

– Symbols d are known (synchronization preamble).

– Carrier phase θ is nuisance parameter.

• Thus seek data-aided and phase-independent ML esti-
mate of τ .

– If known preamble length is K symbols, define

xT =
[
x0 x1 · · · xNK−1

]
.

– Likelihood function:

Λ(x|θ, τ ) = exp

− 1

2σ2

NK−1∑
k=0

∣∣∣∣∣xk −
√
E

T
ej[θ+φ(kTs−τ ;d)]

∣∣∣∣∣
2
 .
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Maximum Likelihood Estimation(cont’d.)

• Simplify by dropping terms independent of θ, τ get equivalent
likelihood function

Λ1(x|θ, τ ) = exp

{
1

σ2

√
E

T
Re

[
e−jθ

NK−1∑
k=0

xke
−jφ(kTs−τ ;d)

]}
.

• Since θ is nuisance parameter we may average it out of Λ1(x|θ, τ )
by integrating against pdf of θ (assumed uniform over (−π, π]).

•With X(τ )
def
=
∑NK−1

k=0 xke
−jφ(kTs−τ ;d), an equivalent likeli-

hood function is

Λ2(x|τ ) = I0

(
1

σ2

√
E

T
|X(τ )|

)
.

• Since I0(·) is increasing in the magnitude of its argument,
equivalent ML estimation problem for τ is

τ̂ = argmaxτ |X(τ )|.
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Examples of |X(τ )|
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Plot of RMS Error as
a Function of SNR
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Plot of RMS Error as
a Function of SNR
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Plot of RMS Error as a Function
of Preamble Length
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Plot of RMS Error as a Function
of Preamble Length
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