

Research on Bandwidth Efficient Wireless Communications: CPM

<http://yara.ecn.purdue.edu/~cominfo/>

Faculty: J. V. Krogmeier, S. B. Gelfand, M. D. Zoltowski
Students: H. Huh, T. Madapush, T. Pande, T. Simarmata

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285

Communications Research Lab
Purdue University School of ECE

Overview

- Research on Continuous Phase Modulation.
 - CPM background.
 - Finite state machine model.
 - MLSE.
 - MAP symbol-by-symbol.
 - Phase and frequency estimation.
 - Coherent demodulation for frequency flat Rayleigh fading channels.
 - Symbol timing recovery.
- Investigations into the Bluetooth Standard.
- Summary of Project Status and Future Work.
- Purdue Course on Fixed Point DSP Programming.

Continuous Phase Modulation (CPM)

- CPM is a nonlinear modulation with memory.
- CPM has a constant envelope.
 - good for use with nonlinear power amplifiers.
 - example: satellite communication.
- CPM has better spectral characteristics than MPSK.
 - memory reduces spectral occupancy.
- Optimum detection of CPM is more complex than MPSK.
 - memory increases complexity of receiver.
 - usually sequence detection via Viterbi algorithm.

Signal Model

- The (complex baseband) transmitted signal is:

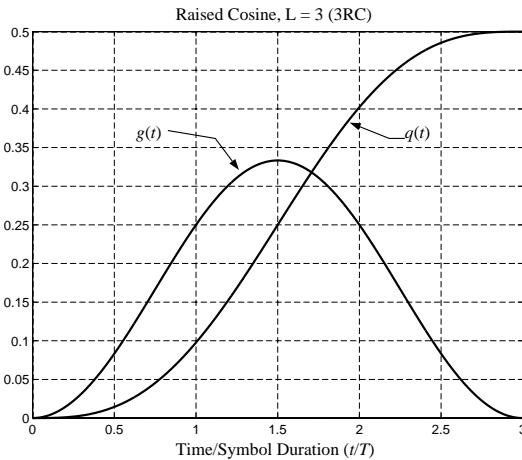
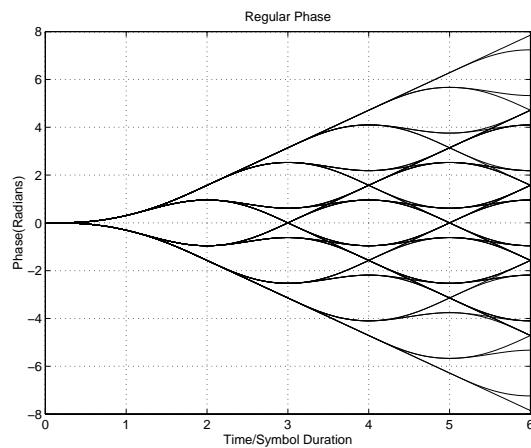
$$s(t; \underline{d}) = \sqrt{E/T} \exp \{j\phi(t; \underline{d})\}.$$

- Information is carried in the phase (nonlinear with memory):

$$\phi(t; \underline{d}) = 2\pi h \sum_i d_i q(t - iT)$$

- $h = 2m/p$ is the modulation index.
- $d_i \in \{\pm 1, \pm 3, \dots, \pm(M-1)\}$.
- $q(t)$ is called the phase response; normalized such that $q(t) = 0$ for $t \leq 0$, $q(t) = 1/2$ for $t \geq LT$.
- L called the memory of the CPM scheme.

Phase Response and Phase Trellis



- Parameters: 3RC, $h = 1/2$, $M = 2$.
- Memory is used to control spectral occupancy. Memory introduced through:
 - Phase continuity (smoothness of $q(t)$).
 - Pulse length parameter L .
- Optimum demodulation of CPM is complex because of memory and nonlinearity.

Finite State Description

- For $n \geq L$ the phase in the interval $nT \leq t < (n+1)T$ is

$$\phi(t; \underline{d}) = \underbrace{\pi h \sum_{i=0}^{n-L} d_i}_{\theta_n} + 2\pi h \sum_{i=n-L+1}^n d_i q(t - iT).$$

- For $h = 2m/p$, θ_n takes at most p values

$$\theta_n \in \{0, 2\pi/p, \dots, 2(p-1)\pi/p\}.$$

- Phase in $nT \leq t < (n+1)T$ is completely specified by
 - Current symbol d_n and
 - The state $\mathbf{s}_n = (d_{n-1}, \dots, d_{n-L+1}, \theta_n) \in \mathcal{S}$.
 - $\|\mathcal{S}\| = pM^{L-1}$.

On the Complexity of CPM

- Current CPM applications have been limited to very simple schemes (MSK and generalizations) due to:
 1. Implementation complexity which arises primarily in two ways.
 - Large number of states needed to describe a CPM signal
 \Rightarrow MLSE must operate on large trellis.
 - Dimensionality of the signal space can be large esp. with partial response or multilevel \Rightarrow Filter bank for computation of demodulator metrics is large.
 2. Synchronization difficulties.
 - The standard low complexity approach is to pass the IF signal through a non-linearity \Rightarrow Generates tones at carrier and clock frequencies.
 - Tones usually extracted by PLLs.
 - However, method fails with smoothed frequency pulses because amplitude of tones too small compared with noise level.

Demodulation of CPM

1. Maximum Likelihood Sequence Detection (MLSD).

- Computes MAP estimate of the symbol sequence via Viterbi Algorithm.
- Complexity is $O(pM^L)$.

2. Symbol-by-Symbol Detection (OSA).

- Produces soft decision metrics.
- Complexity is $O(KpM^{L+1})$.

3. Complexity reduction techniques.

- M-Algorithm.
- T-Algorithm.
- Reduced state demodulation.

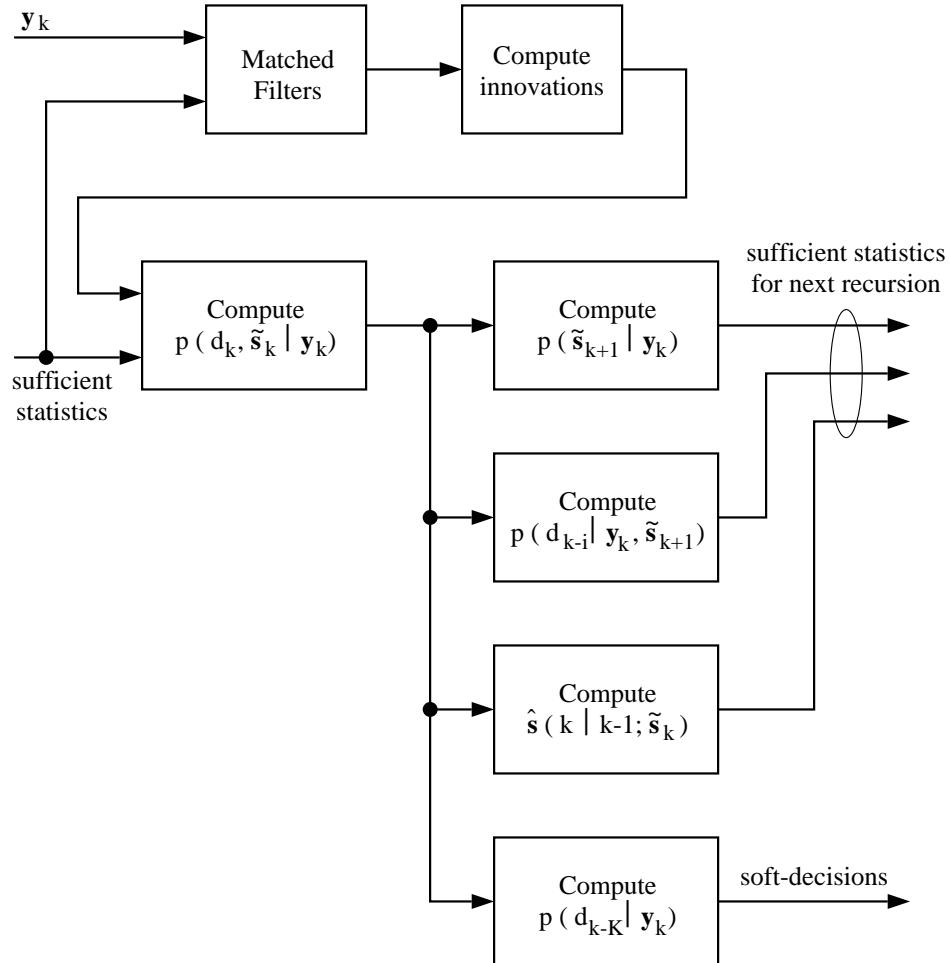
Complexity Reduction Techniques for OSA

- M-Algorithm.
 - retains the largest M_t sufficient statistics.
 - must do a sorting operation.
 - moderately variable complexity.
- T-Algorithm.
 - retains sufficient statistics exceeding a threshold p_t .
 - large variations in complexity.
- Reduced state demodulation.
 - demodulation occurs on a reduced modulation state.
 - no variations in complexity.

Basic Idea of Reduced State Detection

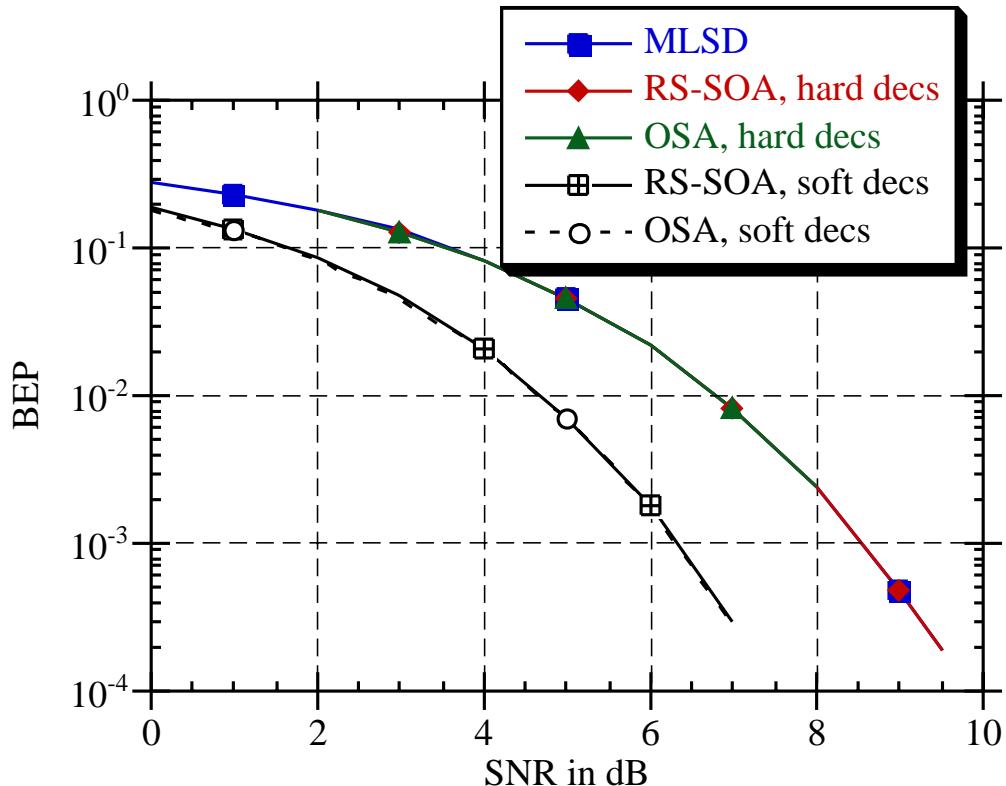
- CPM signal represented by a trellis \mathcal{S} .
 - number of states in trellis is $\|\mathcal{S}\| = pM^{L-1}$.
- A reduced state trellis $\tilde{\mathcal{S}}$ is considered instead.
- Partition original trellis to get a reduced state representation.
- Each state in reduced trellis consists of one or more of the original states.
 - e.g., if $\|\mathcal{S}\| = 64$ can have $\|\tilde{\mathcal{S}}\| = 16$ such that each state in reduced trellis contains 4 of the original states.
- Partition such that Euclidean distance between members in the same state in the reduced trellis is maximized.
 - same principle used for reduced state sequence detection by Eyuboglu and Qureshi (1988).

Block Diagram of the Recursions for RS-SOA

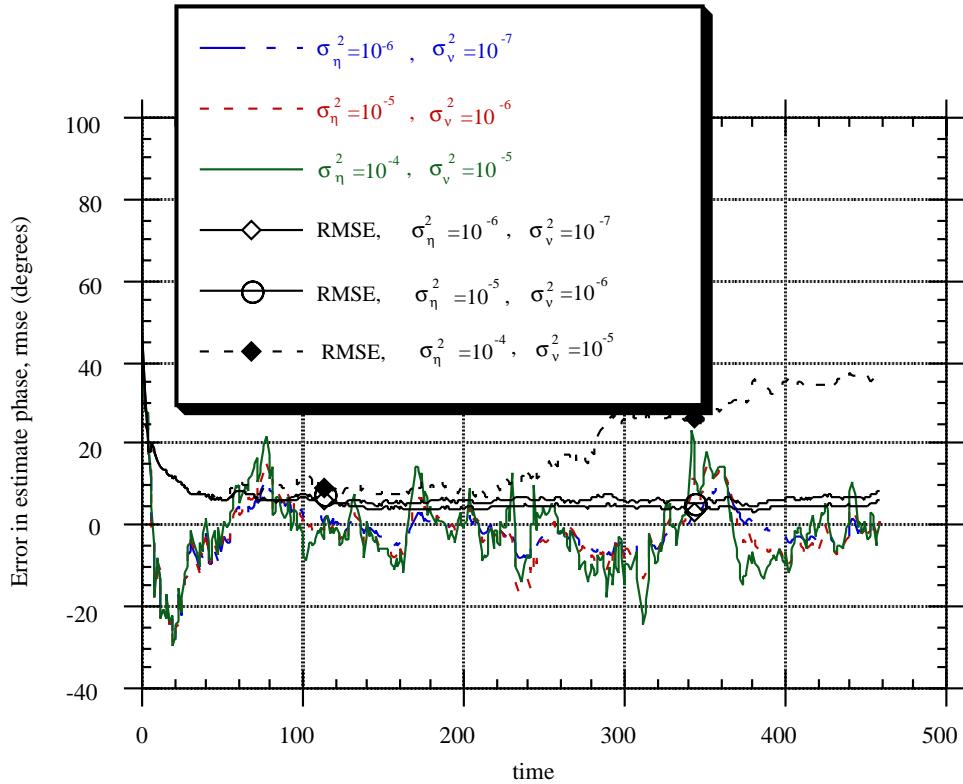


BEP Performance

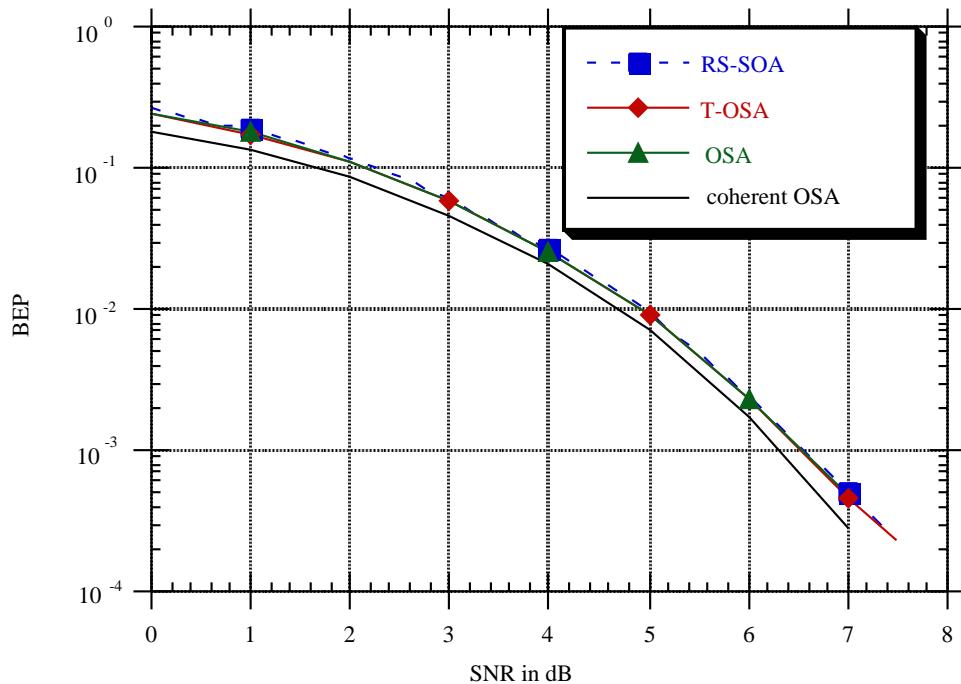
- RC pulse, $L = 3$, $M = 4$, $h = 0.5$.
- Rate 1/2 code, constraint length = 2, 20×20 interleaver.
- Complexity of RS-SOA is 25% of OSA.



Phase Error vs. Time for OSA



BEP vs. SNR for Various Algorithms



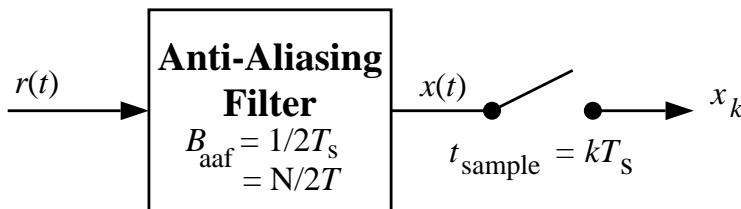
Received Signal Model

- Complex baseband of the received waveform is

$$\begin{aligned}
 r(t) &= s(t - \tau; \underline{d}) e^{j\theta} + w(t) \\
 &= \sqrt{\frac{E}{T}} e^{j[\theta + \phi(t - \tau; \underline{d})]} + w(t)
 \end{aligned}$$

where

- θ and τ are carrier phase and timing epoch, respectively.
- $w(\cdot)$ is complex AWGN of spectral height N_0 .
- Filter and sample with free running clock



- Sampling rate is $1/T_s = N/T$.
- Assume signal is not distorted by AAF:

$$x_k = \sqrt{E/T} e^{j[\theta + \phi(kT_s - \tau; \underline{d})]} + w_k.$$

Maximum Likelihood Estimation

- Signal component $\{x_k\}$ depends upon:
 - Transmitted symbols \underline{d} .
 - Carrier phase θ .
 - Symbol timing epoch τ .
- We will assume:
 - Symbols \underline{d} are known (synchronization preamble).
 - Carrier phase θ is nuisance parameter.
- Thus seek **data-aided** and **phase-independent** ML estimate of τ .
 - If known preamble length is K symbols, define

$$\underline{x}^T = [x_0 \ x_1 \ \cdots \ x_{NK-1}].$$

- Likelihood function:

$$\Lambda(\underline{x}|\theta, \tau) = \exp \left\{ -\frac{1}{2\sigma^2} \sum_{k=0}^{NK-1} \left| x_k - \sqrt{\frac{E}{T}} e^{j[\theta + \phi(kT_s - \tau; \underline{d})]} \right|^2 \right\}.$$

Maximum Likelihood Estimation(cont'd.)

- Simplify by dropping terms independent of θ, τ get equivalent likelihood function

$$\Lambda_1(\underline{x}|\theta, \tau) = \exp \left\{ \frac{1}{\sigma^2} \sqrt{\frac{E}{T}} \operatorname{Re} \left[e^{-j\theta} \sum_{k=0}^{NK-1} x_k e^{-j\phi(kT_s - \tau; \underline{d})} \right] \right\}.$$

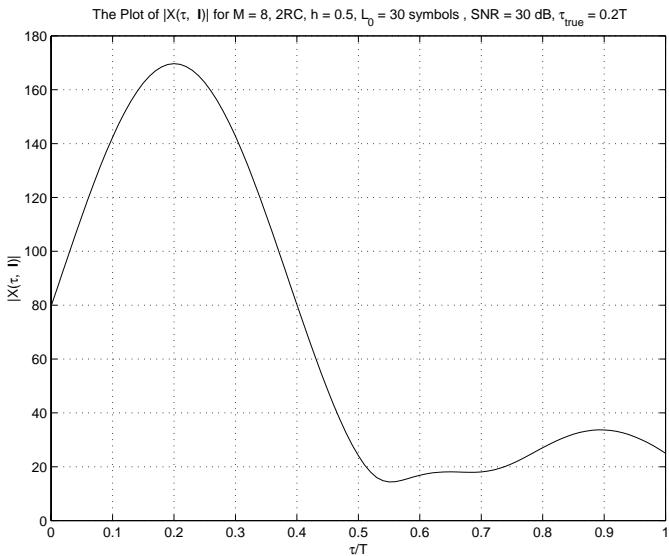
- Since θ is nuisance parameter we may average it out of $\Lambda_1(\underline{x}|\theta, \tau)$ by integrating against pdf of θ (assumed uniform over $(-\pi, \pi]$).
- With $X(\tau) \stackrel{\text{def}}{=} \sum_{k=0}^{NK-1} x_k e^{-j\phi(kT_s - \tau; \underline{d})}$, an equivalent likelihood function is

$$\Lambda_2(\underline{x}|\tau) = I_0 \left(\frac{1}{\sigma^2} \sqrt{\frac{E}{T}} |X(\tau)| \right).$$

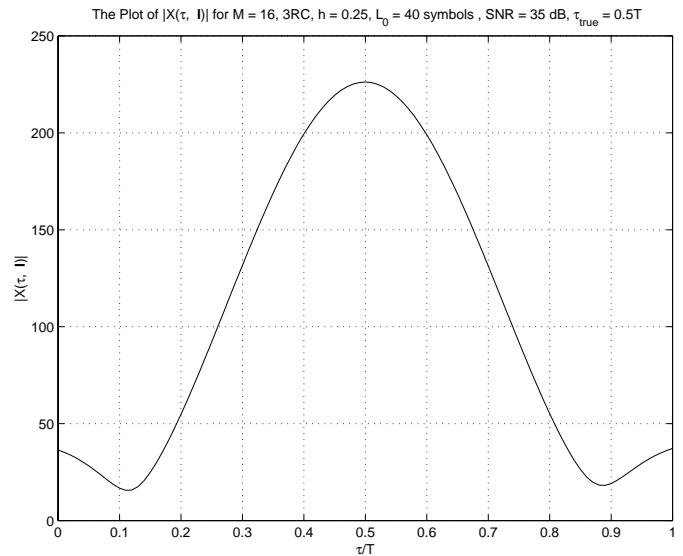
- Since $I_0(\cdot)$ is increasing in the magnitude of its argument, equivalent ML estimation problem for τ is

$$\hat{\tau} = \operatorname{argmax}_{\tau} |X(\tau)|.$$

Examples of $|X(\tau)|$

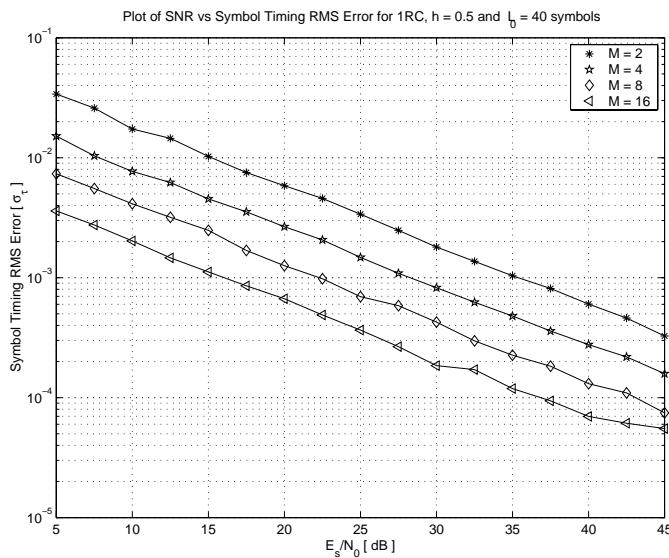


$M = 8$

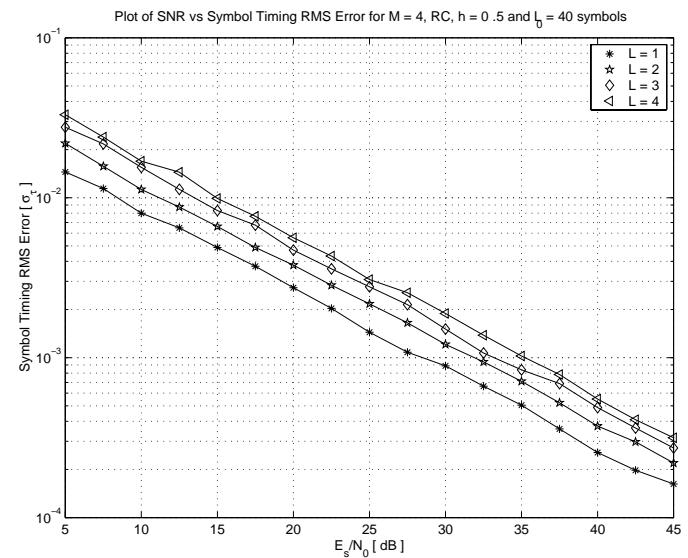


$M = 16$

Plot of RMS Error as a Function of SNR

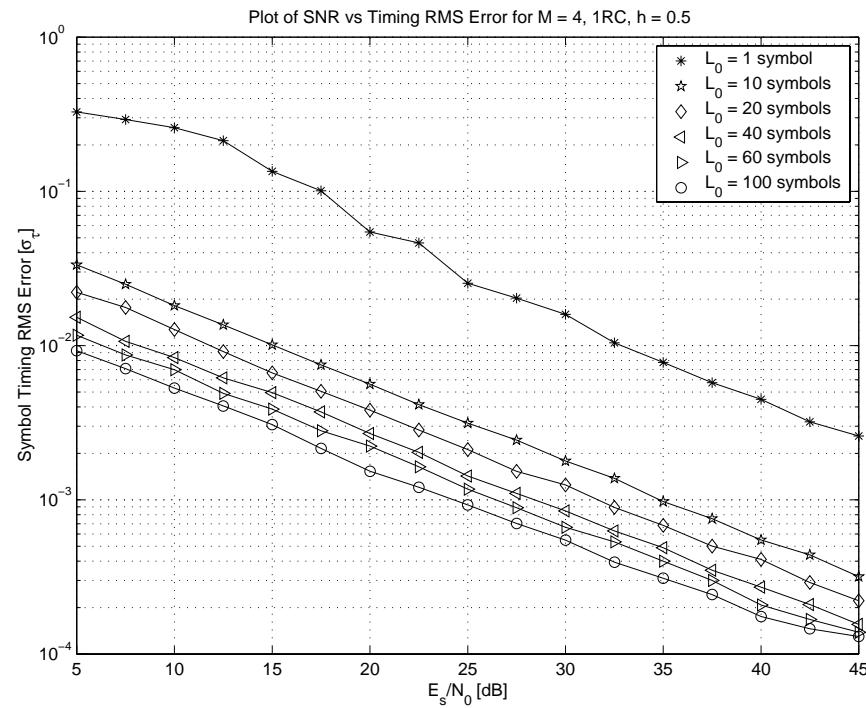


Param. by Size of Alphabet (M)



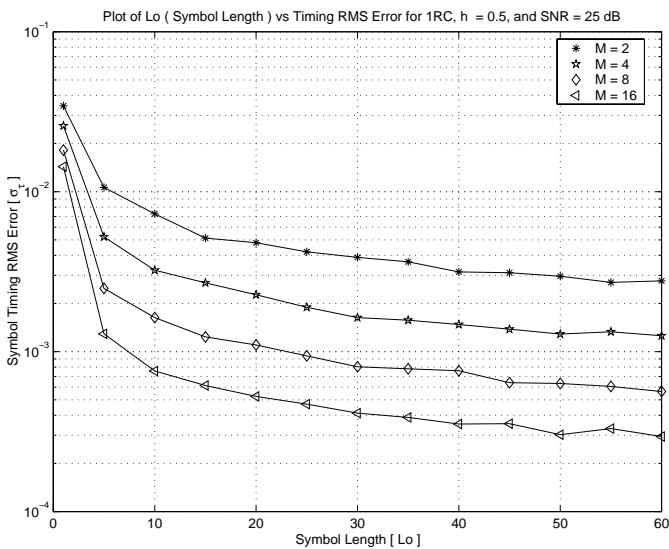
Param. by Length of Phase Response (L)

Plot of RMS Error as a Function of SNR

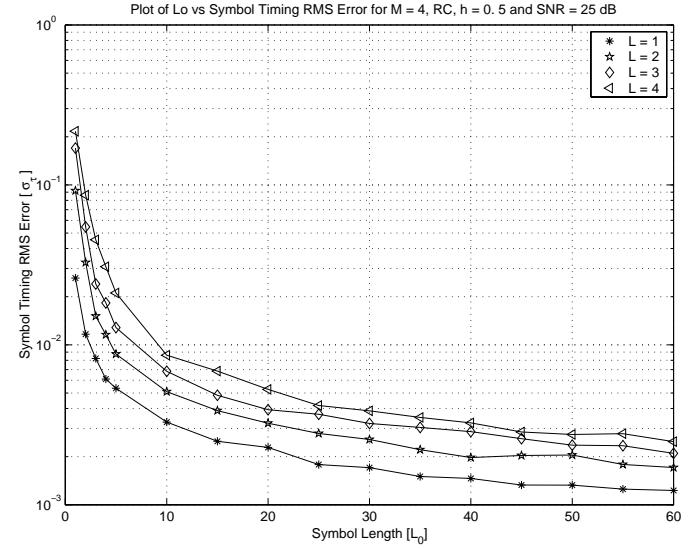


Param. by Preamble Length (K)

Plot of RMS Error as a Function of Preamble Length



Param. by Size of Alphabet (M)



Param. by Length of Phase Response (L)

Plot of RMS Error as a Function of Preamble Length

