
MSP430 Family Linker Description

8-1

Topics

8 Linker Description 8-5

8.1 Linker Development Flow 8-6

8.2 Invoking the Linker 8-7

8.3 Linker Options 8-9
8.3.1 Relocation Capabilities (-a and -r Options) 8-10
8.3.2 C Language Options (-c and -cr Options) 8-11
8.3.2 Define an Entry Point (-e global symbol Option) 8-11
8.3.3 Set Default Fill Value (-f cc Option) 8-11
8.3.4 Make All Global Symbols Static (-h Option) 8-11
8.3.3 Define Heap Size (-heap constant Option) 8-12
8.3.5 Alter the Library Search Algorithm (-i dir Option/C_DIR) 8-12
8.3.6 Create a Map File (-m filename Option) 8-14
8.3.9 Ignore the Memory Directive Fill Specification (-n option) 8-14
8.3.7 Name an Output Module (-o filename Option) 8-14
8.3.8 Specify a Quiet Run (-q Option) 8-14
8.3.9 Strip Symbolic Information (-s Option) 8-15
8.3.4 Define Stack Size (-sstack and -hstack Options) 8-15
8.3.5 Introduce an Unresolved Symbol (-u symbol Option) 8-15
8.3.6 Exhaustively Read Libraries (-x option) 8-15

8.4 Command Files 8-16

8.5 Object Libraries 8-19

8.6 The MEMORY Directive 8-20
8.6.1 Default Memory Model 8-20
8.6.2 MEMORY Directive Syntax 8-20

8.7 The SECTIONS Directive 8-23
8.7.1 Default Sections Configuration 8-23
8.7.2 SECTIONS Directive Syntax 8-23
8.7.3 Specifying the Address of Output Sections (Allocation) 8-26
8.7.4 Specifying Input Sections 8-28

8.8 Specifying a Section’s Runtime Address 8-31
8.8.1 Specifying Two Addresses 8-31
8.8.2 Uninitialized Sections 8-32
8.8.3 Referring to the Load Address by Using the .label Directive 8-32

8.9 Using UNION and GROUP Statements 8-35
8.9.1 Overlaying Sections With the UNION Statement 8-35
8.9.2 Grouping Output Sections Together 8-38

8.10 Overlay Pages 8-39
8.10.1 Using the MEMORY Directive to Define Overlay Pages 8-39
8.10.2 Using Overlay Pages With the SECTIONS Directive 8-39
8.10.3 Syntax of Page Definitions 8-39

8.11 Default Allocation Algorithm 8-39
8.11.1 Default Allocation 8-39

Linker Description MSP430 Family

8-2

8.11.2 General Rules for Forming Output Sections 8-40

8.12 Special Section Types (DSECT, COPY, and NOLOAD) 8-41

8.13 Assigning Symbols at Link Time 8-42
8.13.1 Syntax of Assignment Statements 8-42
8.13.2 Assigning the SPC to a Symbol 8-42
8.13.3 Assignment Expressions 8-43
8.13.4 Symbols Defined by the Linker 8-44

8.14 Creating and Filling Holes 8-45
8.14.1 Initialized and Uninitialized Sections 8-45
8.14.2 Creating Holes 8-45
8.14.3 Filling Holes 8-47
8.14.4 Explicit Initialization of Uninitialized Sections 8-48
8.14.5 Examples of Using Initialized Holes 8-49

8.15 Partial (Incremental) Linking 8-50

8.16 Linking C Code 8-51
8.16.1 Runtime Initialization 8-51
8.16.2 Object Libraries and Runtime Support 8-51
8.16.3 Setting the Size of the Stack and Heap Sections 8-52
8.16.4 Autoinitialization (ROM and RAM Models) 8-52
8.16.5 The -c and -cr Linker Options 8-52

8.17 Linker Example 8-52

Examples

Ex. Title Page
8.1 Linker Command File 8-16

8.2 Command File With Linker Directives 8-17

8.3 The SECTIONS Directive 8-24

8.4 The Most Common Method of Specifying Section Contents 8-28

8.5 Copying a Section From ROM to RAM 8-33

8.6 Illustration of the Form of the UNION Statement 8-35

8.7 Illustration of Separate Load Addresses for UNION Sections 8-37

8.8 Overlay Page 8-39

MSP430 Family Linker Description

8-3

Figures

Fig. Title Page
8.1 Linker Development Flow 8-6

8.2 Section Allocation 8-25

8.3 Runtime Execution 8-34

8.4 Runtime Memory Allocation 8-36

8.5 Load and Run Memory Allocation 8-37

8.6 Initialized Hole 8-49

8.7 RAM Model of Autoinitialization 8-52

8.8 ROM Model of Autoinitialization 8-52

8.7 Linker Command File, demo.cmd 8-53

8.8 Output Map File, demo.map 8-54

Tables

Table Title Page
8.1 Linker Options Summary 8-9

8.2 Operators in Assignment Expressions 8-44

Notes

Note Title Page
8.1

Filling Memory Ranges 8-22

Compatibility With Previous Versions 8-23

Binding and Alignment or Named Memory Are Incompatible 8-27

You Cannot Specify Addresses for Sections Within a Group 8-38

The Sections Directive 8-39

Filling Sections 8-48

Unions and Overlay Pages Are Not the Same 8-54

The PAGE Option 8-54

Linker Description MSP430 Family

8-4

MSP430 Family Linker Description

8-5

8 Linker Description

The MSP430 family linker creates executable modules by combining COFF object files. The
concept of COFF sections is basic to linker operation.

As the linker combines object files, it:

• allocates sections into the target system’s configured memory

• relocates symbols and sections to assign them to final addresses

• resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and
address binding. The language supports expression assignment and evaluation and provides
two powerful directives, MEMORY and SECTIONS, that allow you to:

• define a memory model that conforms to target system memory

• combine object file sections

• allocate sections into specific areas of memory

• define or redefine global symbols at link time

Linker Description MSP430 Family

8-6

8.1 Linker Development Flow

The following figure illustrates the linker’s role in the assembly language development
process. The linker accepts several types of files as input, including object files, command
files, libraries, and partially linked files. The linker creates an executable COFF object
module that can be downloaded to one of several development tools or executed by a
MSP430 device.

 Assembler
 Source

Assembler

COFF Object
Files

Linker

Executable
COFF Objekt

Files

Macro
Source Files

Archiver

Macro Library

Object
Format

Converter

Archiver

Library of
Object Files

EPROM
Programmer

Absolute
Lister

MSP430 Software Evaluation
ModuleSimulator

In-Circuit
Emulator

Figure 8.1: Linker Development Flow

MSP430 Family Linker Description

8-7

8.2 Invoking the Linker

The general syntax for invoking the linker is:

lnk430 [-option] filename1 ... filenamen

lnk430 is the command that invokes the linker.

options

can appear anywhere on the command line or in a linker command file. (Options are
discussed in Section 8.3.)

filenames

can be object files, linker command files, or archive libraries. The default extension
for all input files is .obj; any other extension must be explicitly specified. The linker
can determine whether the input file is an object file or an ASCII file that contains
linker commands. The default output filename is a.out.

There are three methods for invoking the linker:

• Specify options and filenames on the command line. This example links two files, file1.obj
and file2.obj, and creates an output module named link.out.

lnk430 file1.obj file2.obj -o link.out

• Enter the lnk430 command with no filenames and no options; the linker will prompt for
them:

Command files :
Object files [.obj] :
Output files [] :
Options :

For command files, enter one or more command file names.

For object files, enter one or more object file names. The default extension is .obj.
Separate the filenames with spaces or commas; if the last character is a comma, the
linker will prompt for an additional line of object file names.

The output file is the name of the linker output module. This overrides any -o options
entered with any of the other prompts. If there are no -o options and you do not answer
this prompt, the linker will create an object file with a default filename of a.out.

The options prompt is for additional options, although you can also enter them in a
command file. Enter them with hyphens, just as you would on the command line.

• Put filenames and options in a linker command file. For example, assume the file
linker.cmd contains the following lines:

-o link.out
file1.obj
file2.obj

Now you can invoke the linker from the command line; specify the command file name as
an input file:

lnk430 linker.cmd

Linker Description MSP430 Family

8-8

When you use a command file, you can also specify other options and files on the
command line. For example, you could enter:

lnk430 -m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters it on the
command line, so it links the files in this order: file1.obj, file2.obj, and file3.obj. This
example creates an output file called link.out and a map file called link.map.

MSP430 Family Linker Description

8-9

8.3 Linker Options

Linker options control linking operations. They can be placed on the command line or in a
command file. Linker options must be preceded by a hyphen (-). The order in which options
are specified is unimportant, except for the -l and -i options. Options are separated from
arguments (if they have them) by an optional space.

Option Description
-a Produce an absolute, executable module. This is the default; if neither

-a nor -r is specified, the linker acts as if -a is specified.
-ar Produce a relocatable, executable object module.
-e global symbol Define a global symbol that specifies the primary entry point for the

output module.
-f fill value Set the default fill value for holes within output sections; fill value is a

16–bit constant.
-h Make all global symbols static.
-i dir † Alter the library–search algorithm to look in dir before looking in the

default location. This option must appear before the -l option.
-l filename † Name an archive library file as linker input; filename is an archive

library name.
-m filename † Produce a map or listing of the input and output sections, including

holes, and place the listing in filename.
-o filename † Name the executable output module. The default filename is a.out.
-q Request a quiet run (suppress the banner).
-r Retain relocation entries in the output module.
-s Strip symbol table information and line number entries from the output

module.
-u symbol Place an unresolved external symbol into the output module's symbol

table.
-x Force rereading of libraries. Resolves “back" references.
-z filename † Produce an additional byte formatted ASCII file loadable by the

evaluation module. The default filename is the output filename with
the extension .txt.

† The filename must follow operating system conventions.

Table 8.1: Linker Options Summary

Linker Description MSP430 Family

8-10

8.3.1 Relocation Capabilities (-a and -r Options)

One of the tasks the linker performs is relocation. Relocation is the process of adjusting all
references to a symbol when the symbol’s address changes. The linker supports two options
(-a and -r) that allow you to produce an absolute or a relocatable output module. Default is -
a.

• Producing an Absolute Output Module (-a Option)

When you use the -a option without the -r option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable
files contain the following:
• special symbols defined by the linker
• an optional header that describes information such as the program entry point
• no unresolved references

This example links file1.obj and file2.obj and creates an absolute output module called
a.out:

lnk430 -a file1.obj file2.obj

• Producing a Relocatable Output Module (-r Option)

When you use the -r option without the -a option, the linker retains relocation entries in
the output module. If the output module will be relocated (at load time) or relinked (by
another linker execution), use -r to retain the relocation entries.

The linker produces an unexecutable file when you use the -r option without -a. A file that
is not executable does not contain special linker symbols or an optional header. The file
may contain unresolved references, but these references do not prevent creation of an
output module.

This example links file1.obj and file2.obj and creates a relocatable output module called
a.out:

lnk430 -r file1.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time.
(Linking a file that will be relinked with other files is called partial linking)

• Producing an Executable Relocatable Output Module (-ar)

If you invoke the linker with both the -a and -r options, the linker produces an executable,
relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references, but the relocation information is retained.

This example links file1.obj and file2.obj and creates an executable, relocatable output
module called xr.out:

lnk430 -ar file1.obj file2.obj -o xr.out

Note that you can string the options together (lnk430 -ar) or you can enter them
separately (lnk430 -a -r).

MSP430 Family Linker Description

8-11

• Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it encounters a file
that contains no relocation or symbol table information. Relinking an absolute file can be
successful only if each input file contains no information that needs to be relocated (that
is, each file has no unresolved references and is bound to the same virtual address that it
was bound to when the linker created it).

8.3.2 Define an Entry Point (-e global symbol Option)

The memory address that a program begins executing from is called the entry point. When
a loader loads a program into target memory, the program counter must be initialized to the
entry point; the PC then points to the beginning of the program.

The linker can assign one of four possible values to the entry point. These values are listed
below in the order in which the linker tries to use them. If you use one of the first three
values, it must be an external symbol in the symbol table. Possible entry point values
include:

• The value specified by the -e option. The syntax is -e global symbol where global symbol
defines the entry point and must appear as an external symbol in one of the input files.

• Zero (default value).

This example links file1.obj and file2.obj. The symbol begin is the entry point; begin must be
defined as external in file1 or file2.

lnk430 -e begin file1.obj file2.obj

8.3.3 Set Default Fill Value (-f cc Option)

The -f option fills the holes formed within output sections or initializes uninitialized sections
when they are combined with initialized sections. This allows you to initialize memory areas
during link time without reassembling a source file. The argument cc is a 16–bit constant (up
to four hexadecimal digits). If you do not use -f, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCD:

lnk430 -f 0ABCDh file1.obj file2.obj

8.3.4 Make All Global Symbols Static (-h Option)

The -h option makes output global symbols static. This is useful when you are using partial
linking to link related object files into self–contained modules, then relinking the modules
together into a final system. If there are global symbols in one module that have the same
name as global symbols in other modules, but you want to treat them as separate symbols,
use the -h option when building the modules. The global symbols in the modules, which
would normally be visible to the other modules and cause possible redefinition problems in
the final link, are made static so they are not visible to the other modules.

Linker Description MSP430 Family

8-12

For example, assume b1.obj, b2.obj, and b3.obj are related and reference a global variable
GLOB. Also assume that d1.obj, d2.obj, and d3.obj are related and reference a separate
global variable GLOB. You can link the related files together with the following commands:

 lnk430 -h -r b1.obj b2.obj b3.obj -o bpart.out
 lnk430 -h -r d1.obj d2.obj d3.obj -o dpart.out

The -h option guarantees that bpart.out and dpart.out will not have global symbols and
therefore two distinct versions of GLOB exist. The -r option is used to allow bpart.out and
dpart.out to retain their relocation entries. These two partially linked files can then be linked
together safely with the following command:

 lnk430 bpart.out dpart.out -o system.out

8.3.5 Alter the Library Search Algorithm (-i dir Option/C_DIR)

Usually, when you want to specify a library as linker input, you simply enter the library name
as you would any other input filename; the linker looks for the library in the current directory.
For example, suppose the current directory contains the library object.lib. Assume that this
library defines symbols that are referenced in the file file1.obj. This is how you link the files:

lnk430 file1.obj object.lib

If you want to use a library that is not in the current directory, use the -l (lowercase “L") linker
option. The syntax for this option is -l filename. The filename is the name of an archive
library; the space between -l and the filename is optional.

You can augment the linker's directory search algorithm by using the -i linker option or the
environment variable. The linker searches for object libraries in the following order:

1) It searches directories named with the -i linker option.
2) It searches directories named with the environment variable C_DIR.
3) If C_DIR is not set, it searches directories named with the assembler's environment

variable, A_DIR.
4) It searches the current directory.

-i Linker Options

The -i linker option names an alternate directory that contains object libraries. The syntax for
this option is -i dir. dir names a directory that contains object libraries; the space between -i
and the directory name is optional. When the linker is searching for object libraries named
with the -l option, it searches through directories named with -i first. Each -i option specifies
only one directory, but you can use several -i options per invocation. When you use the -i
option to name an alternate directory, it must precede the -l option on the command line or in
a command file.

MSP430 Family Linker Description

8-13

As an example, assume that there are two archive libraries called r.lib and lib2.lib. The table
below shows the directories that r.lib and lib2.lib reside in, how to set environment variable,
and how to use both libraries during a link.

Pathname Invocation Command

DOS \ld and \ld2 lnk430 f1.obj f2.obj -i\ld -i\ld2 -lr.lib -llib2.lib

Environment Variable (C_DIR)

An environment variable is a system symbol that you define and assign a string to. The linker
uses an environment variable named C_DIR to name alternate directories that contain object
libraries. The command for assigning the environment variable is:

DOS set C_DIR=pathname;another pathname ...

The pathnames are directories that contain object libraries. Use the -l option on the
command line or in a command file to tell the linker which libraries to search for.

As an example, assume that two archive libraries called r.lib and lib2.lib reside in ld and ld2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set
the environment variable, and how to use both libraries during a link.

Pathname Invocation Command

DOS \ld and \ld2 set C_DIR=\ld;\ld2
lnk430 f1.obj f2.obj -l r.lib -l lib2.lib

Note that the environment variable remains set until you reboot the system or reset the
variable by entering:

DOS set C_DIR=

The assembler uses an environment variable named A_DIR to name alternate directories
that contain copy/include files or macro libraries. If C_DIR is not set, the linker will search for
object libraries in the directories named with A_DIR.

Linker Description MSP430 Family

8-14

8.3.6 Create a Map File (-m filename Option)

The -m option creates a link map listing and puts it in filename. This map describes:

• Memory configuration.

• Input and output section allocation.

• The addresses of external symbols after they have been relocated.

The map file contains the name of the output module and the entry point; it may also contain
up to three tables:

• A table showing the new memory configuration if any nondefault memory is specified.

• A table showing the linked addresses of each output section and the input sections that
make up the output sections.

• A table showing each external symbol and its address. This table has two columns: the
left column contains the symbols sorted by name, and the right column contains the
symbols sorted by address.

This example links file1.obj and file2.obj and creates a map file called map.out:

lnk430 file1.obj file2.obj -m map.out

8.3.7 Name an Output Module (-o filename Option)

The linker creates an output module when no errors are encountered. If you do not specify
a filename for the output module, the linker gives it the default name a.out. If you want to
write the output module to a different file, use the -o option. The filename is the new output
module name.

This example links file1.obj and file2.obj and creates an output module named run.out:

lnk430 -o run.out file1.obj file2.obj

8.3.8 Specify a Quiet Run (-q Option)

The -q option suppresses the linker’s banner when -q is the first option on the command line
or in a command file. This option is useful for batch operation.

MSP430 Family Linker Description

8-15

8.3.9 Strip Symbolic Information (-s Option)

The -s option creates a smaller output module by omitting symbol table information and line
number entries. The -s option is useful for production applications when you must create the
smallest possible output module.

This example links file1.obj and file2.obj and creates an output module, stripped off line
numbers and symbol table information, named nosym.out:

lnk430 -o nosym.out -s file1.obj file2.obj

Note that using the -s option limits later use of a symbolic debugger and may prevent a file
from being relinked.

8.3.5 Introduce an Unresolved Symbol (-u symbol Option)

The -u option introduces an unresolved symbol into the linker’s symbol table. This forces the
linker to search through a library and include the member that defines the symbol. Note that
the linker must encounter the -u option before it links in the member that defines the symbol.

For example, suppose a library named rts.lib contains a member that defines the symbol
symtab; none of the object files you are linking reference symtab. Suppose you plan to relink
the output module, however, and you would like to include the library member that defines
symtab in this link. Using the -u option as shown below forces the linker to search rts.lib for
the member that defines symtab and to link in the member.

lnk430 -u symtab file1.obj file2.obj rts.lib

If you do not use -u, this member is not included, because there is no explicit reference to it
in file1.obj or file2.obj.

8.3.6 Exhaustively Read Libraries (-x option)

The linker normally reads input files, archive libraries included, only once: when they are
encountered on the command line or in the command file. When an archive is read, any
members that resolve references to undefined symbols are included in the link. If an input file
later references a symbol defined in a previously read archive library (this is called a back
reference), the reference will not be resolved.

You can force the linker to repeatedly reread all libraries with the -x option. The linker will
continue to reread libraries until no more references can be resolved. For example, if a.lib
contains a reference to a symbol defined in b.lib, and b.lib contains a reference to a symbol
defined in a.lib, you can resolve the mutual dependencies by listing one of the libraries twice,
as in:

lnk430 -la.lib -lb.lib -la.lib

or you can force the linker to do it for you:

lnk430 -x -la.lib -lb.lib

Linking with the -x option may be slower, so you should use the option only as needed.

Linker Description MSP430 Family

8-16

8.4 Command Files

Linker command files allow you to put linking information in a file; this is useful when you
often invoke the linker with the same information. Linker command files are also useful
because they allow you to use the MEMORY and SECTIONS directives to customize your
application. You must use these directives in a command file; you cannot use them on the
command line. Command files are ASCII files that contain one or more of the following:

• Input file names, which specify object files, archive libraries, or other command files. (If a
command file calls another command file as input, this statement must be the last
statement in the calling command file. The linker does not return from called command
files.)

• Linker options, which can be used in the command file in the same manner that they are
used on the command line.

• The MEMORY and SECTIONS linker directives. The MEMORY directive defines the
target memory configuration. The SECTIONS directive controls how sections are built
and allocated.

• Assignment statements, which define and assign values to global symbols.

To invoke the linker with a command file, enter the lnk430 command and follow it with the
name of the command file:

lnk430 command file name

The linker processes input files in the order that it encounters them. If the linker recognizes a
file as an object file, it links the file. Otherwise, it assumes that a file is a command file and
begins reading and processing commands from it.

The example shows a sample linker command file called link.cmd.

 /**/
 /* Sample Linker Command File */
 /**/
 a.obj /* First input filename */
 b.obj /* Second input filename */
 -o prog.out /* Option to specify output file */
 -m prog.map /* Option to specify map file */

Example 8.1: Linker Command File

This sample file contains only filenames and options. (Note that you can place comments in
a command file by delimiting them with /* and */.) To invoke the linker with this command file,
enter:

lnk430 link.cmd

You can place other parameters on the command line when you use a command file:

lnk430 -r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters it, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

MSP430 Family Linker Description

8-17

You can specify multiple command files. If, for example, you have a file called names.lst that
contains filenames and another file called dir.cmd that contains linker directives, you could
enter:

lnk430 names.lst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels.
If a command file calls another command file as input, this statement must be the last
statement in the calling command file.

Blanks and blank lines that appear in a command file are insignificant except as delimiters.
This applies to the format of linker directives in a command file, also. The following example
shows a sample command file that contains linker directives. (Linker directive formats are
discussed in later sections.)

 /***/

 /* Sample Linker Command File with Directives */

 /***/

 a.obj b.obj c.obj /* Input filenames */

 -o prog.out -m prog.map /* Options */

 MEMORY /* MEMORY directives */

 {

 RAM: origin = 200h length = 0100h

 ROM: origin = 0F000h length = 1000h

 }

 SECTIONS /* SECTION directives */

 {

 .text: > ROM

 .data: > ROM

 .bss: > RAM

 }

Example 8.2: Command File With Linker Directives

Linker Description MSP430 Family

8-18

The following names are reserved as keywords for linker directives. Do not use them as
symbol or section names in a command file.

align GROUP origin
ALIGN l (lowercase L) ORIGIN
attr len page
ATTR length PAGE
block LENGTH range
BLOCK load run
COPY LOAD RUN
DSECT MEMORY SECTIONS
f NOLOAD spare
FILL o type
fill org TYPE
group UNION

Constants in Command Files

Constants can be specified with either of two syntax schemes: the scheme used for
specifying decimal, octal, or hexadecimal constants used in the assember or the scheme
used for integer constants in "C" syntax.

MSP430 Family Linker Description

8-19

8.5 Object Libraries

An object library is a partitioned archive file that contains complete object files as members.
Usually, a group of related modules are grouped together into a library. When you specify an
object library as linker input, the linker includes any members of the library that define
existing unresolved symbol references. You can use the MSP430 archiver to build and
maintain libraries.

Using object libraries can reduce link time and can reduce the size of the executable module.
If a normal object file that contains a function is specified at link time, it is linked whether it is
used or not; however, if that same function is placed in an archive library, it is included only if
it is referenced.

The order in which libraries are specified is important because the linker includes only those
members that resolve symbols that are undefined when the library is searched. The same
library can be specified as often as necessary; it is searched each time it is included, or the -
x option may be used. A library has a table that lists all external symbols defined in the
library; the linker searches through the table until it determines that it cannot use the library
to resolve any more references.

This example links several files and libraries. Assume the following:

• Input files f1.obj and f2.obj both reference an external function named clrscr.

• Input file f1.obj references the symbol origin.

• Input file f2.obj references the symbol fillclr.

• Library libc.lib, member 0, contains a definition of origin.

• Library liba.lib, member 3, contains a definition of fillclr.

• Member 1 of both libraries defines clrscr.

If you enter lnk430 f1.obj liba.lib f2.obj libc.lib:

• Member 1 of liba.lib satisfies both references to clrscr because the library is searched
and clrscr is defined before f2.obj references it.

• Member 0 of libc.lib satisfies the reference to origin.

• Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter lnk430 f1.obj f2.obj libc.lib liba.lib, the references to clrscr are satisfied
by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the -u option to
force the linker to include a library member. The next example creates an undefined symbol
rout1 in the linker’s global symbol table:

lnk430 -u rout1 libc.lib

If any members of libc.lib define rout1, the linker includes those members. Note that it is not
possible to control the allocation of individual library members; members are allocated
according to the SECTIONS directive default allocation algorithm.

Linker Description MSP430 Family

8-20

8.6 The MEMORY Directive

The linker determines where output sections should be allocated into memory; the linker
must have a model of target memory to accomplish this task. The MEMORY directive allows
you to specify a model of target memory so that you can define the types of memory your
system contains and the address ranges they occupy. The linker maintains the model as it
allocates output sections and uses the model to determine which memory locations can be
used for object code.

The memory configurations of MSP430 systems differ from application to application. The
MEMORY directive allows you to specify a variety of configurations. After you use the
MEMORY directive to define a memory model, you can use the SECTIONS directive to
allocate output sections into defined memory.

8.6.1 Default Memory Model

The linker’s default memory model is based on the MSP430 architecture. This model
assumes that the following memory is available:

• 256 bytes of RAM, beginning at location 200h

• 4K bytes of ROM, beginning at location 0F000h.

If you do not use the MEMORY directive, the linker uses this default memory model.

8.6.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target
system and can be used by a program. Each range of memory has several characteristics:

• Name

• Starting address

• Length

• Optional set of attributes

• Optional fill specification

When you use the MEMORY directive, be sure to identify all the memory ranges that are
available to load code into. Any memory that you do not explicitly account for with the
MEMORY directive is unconfigured. The linker does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not
including an address range in a MEMORY directive statement.

MSP430 Family Linker Description

8-21

The MEMORY directive is specified in a command file by the word MEMORY (uppercase),
followed by a list of memory range specifications enclosed in braces. For example, you could
use the MEMORY directive to specify a memory configuration as follows:

/**/
/* Sample command file with MEMORY directive */
/**/
file1.obj file2.obj /* Input files */
–o prog.out /* Options */

MEMORY
{

RAM: origin = 200h length = 100h
ROM: origin = 0F000h length = 1000h

}

You could then use the SECTIONS directive to link the .bss section into the memory area
named RAM, .text into ROM, and .data into ROM.

The general syntax for the MEMORY directive is:

MEMORY
{

name 1 [(attr)] : origin = constant , length = constant, fill = constant
.
.
name n [(attr)] : origin = constant , length = constant, fill = constant

}

name Names a memory range. A memory name may be 1 to 8 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker;
they simply identify memory ranges. Memory range names are internal to the linker
and are not retained in the output file or in the symbol table.

attr Specifies 1 to 4 attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes can restrict the
allocation of output sections into certain memory ranges. If you do not use any
attributes, you can allocate any output section into any range with no restrictions. Any
memory for which no attributes are specified (including all memory in the default
model) has all four attributes. Valid attributes include:

R Specifies that the memory can be read.

W Specifies that the memory can be written to.

X Specifies that the memory can contain executable code.

I Specifies that the memory can be initialized.

origin Specifies the starting address of a memory range and may be abbreviated as org or
o. The value, specified in bytes, is a long integer constant and may be decimal, octal,
or hexadecimal.

length Specifies the length of a memory range and may be abbreviated as len or l. The
value, specified in bytes, is a long integer constant and may be decimal, octal, or
hexadecimal.

Linker Description MSP430 Family

8-22

fill Specifies a fill character for the memory range and may be abbreviated as f. Fills are
optional. The value is a two–byte integer constant and may be decimal, octal, or
hexadecimal. The fill value will be used to fill any areas of the memory range that are
not allocated to a section.

Note: Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very large
because filling a memory range (even with zeros) causes raw data to be generated for all
unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill
constant of 0FFFFh:

MEMORY
{

RFILE (RW) : o = 02h, l = 0FEh, f = 0FFFFh
}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to
control allocation of output sections. After you use the MEMORY directive to specify the
target system's memory model, you can use the SECTIONS directive to allocate output
sections into specific named memory ranges or into memory that has specific attributes.

MSP430 Family Linker Description

8-23

8.7 The SECTIONS Directive

The SECTIONS directive tells the linker how to combine sections from input files into
sections in the output module and where to place the output sections in memory. In
summary, the SECTIONS directive:

• Describes how input sections are combined into output sections.

• Defines output sections in the executable program.

• Specifies where output sections are placed in memory (in relation to each other and to
the entire memory space).

• Permits renaming of output sections.

8.7.1 Default Sections Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining
and allocating the sections.

8.7.2 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS
(uppercase), followed by a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS
 {
 name : [property, property, property, ...]
 name : [property, property, property, ...]
 name : [property, property, property, ...]
}

Each section specification, beginning with name, defines an output section. (An output
section is a section in the output file.) After the section name is a list of properties that define
the section’s contents and how it is allocated. The properties may be separated by optional
commas. Possible properties for a section are:

load allocation defines where in memory the section is to be loaded.
Syntax: load = allocation or

allocation or
 > allocation

run allocation defines where in memory the section is to be run.
Syntax: run = allocation or

run > allocation

input sections defines the input sections composing the section.
Syntax: { input_sections }

Linker Description MSP430 Family

8-24

section type defines flags for special section types.
Syntax: type = COPY or

type = DSECT or
type = NOLOAD

For more information on section types, see Section 8.12.

fill value defines the value used to fill uninitialized "holes"
Syntax: fill = value or

name: ... { ... } = value
For more information on creating and filling holes, see Section 8.14.

The example shows a SECTIONS directive in a sample linker command file. The figure on
the next page shows how these sections are allocated in memory.

 /**/

 /* Sample command file with SECTIONS directives */

 /**/

 file1.obj file2.obj /* Input files */

 -o prog.out /* Options */

 SECTIONS

 {

 .text: load = ROM

 .const: load = ROM, run = 0D000h

 .bss: load = RAM

 .vectors: load = 0FFE0h

 {

 t1.obj(.intvec1)

 t2.obj(.intvec2)

 endvec = .;

 }

 .data: align = 16

 }

Example 8.3: The SECTIONS Directive

MSP430 Family Linker Description

8-25

The figure shows the five output sections defined by the sections directive in the last
example: .vectors, .text, .const, .bss, and .data.

- allocated in ROM The .text section combines the .text sections
from file1.obj and file2.obj. The linker combines
all sections named .text into section.

- bound at 0FFE0h
The .vectors section is composed of the
.intvec1 section from t1.obj and the .intvec2
section from t2.obj.

The .const section combines the .const sec-
tions from file1.obj and file2.obj. The application
must relocate the section to run at 0D000h.

- allocated in RAM The .bss section combines the .bss sections
from file1.obj and file2.obj

- aligned on 16-byte boundary

The .data section combines the .data sections
from file1.obj and file2.obj. The linker will place it
anywhere there is space for it (in RAM in this
illustration) and align it to a 16-byte boundary.

.text

.vectors

.const

.bss

.data

ROM

RAM

Figure 8.2: Section Allocation

Linker Description MSP430 Family

8-26

8.7.3 Specifying the Address of Output Sections (Allocation)

The linker assigns each output section two locations in target memory: the location where
the section will be loaded and the location where it will be run. Usually, these are the same,
and you can think of each section as having only a single address. In any case, the process
of locating the output section in the target’s memory and assigning its address(es) is called
allocation.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to
allocate the section. Generally, the linker puts sections wherever they fit into configured
memory. You can override this default allocation for a section by defining it within a
SECTIONS directive and providing instructions on how to allocate it.

You control allocation by specifying one or more allocation parameters. Each parameter
consists of a keyword, an optional equals sign or greater–than sign, and a value optionally
enclosed in parentheses. If load and run allocation is separate, all parameters following the
keyword LOAD apply to load allocation, and those following RUN apply to run allocation.
Possible allocation parameters are:

binding allocates a section at a specific address
.text: load = 0x1000

memory allocates the section into a range defined in the MEMORY directive with the
specified name or attributes
.text: load > ROM

alignment specifies that the section should start on an address boundary
.text: align = 0x100

blocking specifies that the section must fit between two address boundaries: for
example, on a single data page.
.text: block(0x100)

For the load (usually the only) allocation, you may simply use a greater–than sign and omit
the LOAD keyword:

.text: > ROM .text: {...} > ROM

.text: > 0x4000

If more than one parameter is used, you can string them together as follows:

.text: > ROM align 16

Or if you prefer, use parentheses for readability:

.text: load = (ROM align(16))

Binding

You can supply a specific starting address for an output section by following the section
name with an address:

.text: 0x4000

MSP430 Family Linker Description

8-27

This example specifies that the .text section must begin at location 4000h. The binding
address must be a 16–bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough
space), but they cannot overlap. If there is not enough space to bind a section to a specified
address, the linker issues an error message.

Note: Binding and Alignment or Named Memory Are Incompatible

You cannot bind a section to an address if you use alignment or named memory. If you try
to do this, the linker issues an error message.

Memory

You can allocate a section into a memory range that is defined by the MEMORY directive.
This example names ranges and links sections into them:

MEMORY
{

ROM (RIX) : origin = 0h, length = 1000h
RAM (RWIX): origin = 0D000h, length = 1000h

}
SECTIONS
{

.text : > ROM

.data : > RAM, ALIGN=64

.bss : > RAM
}

In this example, the linker places .text into the area called ROM. The .data and .bss output
sections are allocated into RAM. You can align a section within a named memory range; the
.data section is aligned on a 64–word boundary within the RAM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do
this, specify a set of attributes (enclosed in parentheses) instead of a memory name. Using
the same MEMORY directive declaration, you can specify:

SECTIONS
{

.text: > (X) /* .text --> executable memory */

.data: > (RI) /* .data --> read or init memory */

.bss : > (RW) /* .bss --> read or write memory */
}

In this example, the .text output section can be linked into either the ROM or RAM area
because both areas have the X attribute. The .data section can also go into either ROM or
RAM because both areas have the R and I attributes. The .bss output section, however,
must go into the RAM area because only RAM is declared with the W attribute.

Linker Description MSP430 Family

8-28

You cannot control where in a named memory range a section is allocated, although the
linker uses lower memory addresses first and avoids fragmentation when possible. In the
preceding examples, assuming no other sections had been bound to addresses that would
interfere with this allocation process, the .text section would start at address 0. If a section
must start on a specific address, use binding instead of named memory.

Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n–byte
boundary, where n is a power of 2. For example:

.text: load = align(32)

allocates .text so that it falls on a 32-byte boundary.

Blocking is a weaker form of alignment that places a section so that it is allocated anywhere
within a “block" of size n. As with alignment, n must be a power of 2. For example:

bss: load = block(0x1000)

allocates .bss so that the entire section is contained in a single 4K–byte data page.

You can use alignment or blocking alone or in conjunction with a memory area, but
alignment and blocking cannot be used together.

8.7.4 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to
form an output section. The linker combines input sections by concatenating them in the
order specified. The size of an output section is the sum of the sizes of the input sections
that make up the output section.

SECTIONS

{

.text:

.data:

.bss :

}

Example 8.4: The Most Common Method of Specifying Section Contents

The linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters
them in the input files. The linker performs similar operations with the .data and .bss
sections. You can use this type of specification for any output section.

MSP430 Family Linker Description

8-29

You can explicitly specify the input sections that form an output section. Each input section is
identified by its filename and section name:

SECTIONS
{

.text : /* Build .text output section */
{

f1.obj(.text) /* Link .text section from f1.obj */
f2.obj(sec1) /* Link sec1 section from f2.obj */
f3.obj /* Link ALL sections from f3.obj */
f4.obj(.text,sec2) /* Link .text and sec2 from f4.obj */

}
}

Note that it is not necessary for an input section to have the same name as another it is
combined with or as the output section it becomes part of. If a file is listed with no sections,
all of its sections are included in the output section. If any additional input sections have the
same name as an output section but are not explicitly specified by the SECTIONS directive,
they are automatically linked in at the end of the output section. For example, if the linker
found more .text sections in the preceding example and these .text sections were not
specified anywhere in the SECTIONS directive, the linker would concatenate these extra
sections after f4.obj(sec2).

The specifications in the example on the page before are actually a shorthand method for
the following:

SECTIONS
{

.text: { *(.text) }

.data: { *(.data) }

.bss: { *(.bss) }
}

The *(.text) means the unallocated .text sections from all the input files. This format is useful
when:

• You want the output section to contain all input sections that have a certain name, but
the output section name is different from the input sections’ names.

• You want the linker to allocate the input sections before it processes additional input
sections or commands within the braces.

Here’s an example that uses this method:

SECTIONS
{

.text : {
abc.obj(xqt)

*(.text)
}

.data : {
*(.data)
fil.obj(table)

}
}

Linker Description MSP430 Family

8-30

In this example, the .text output section contains a named section xqt from file abc.obj,
which is followed by all the .text input sections. The .data section contains all the .data input
sections, followed by a named section table from the file fil.obj. Note that this method
includes all the unallocated sections. For example, if one of the .text input sections was
already included in another output section when the linker encountered *(.text), the linker
could not include that first .text input section in the second output section.

MSP430 Family Linker Description

8-31

8.8 Specifying a Section’s Runtime Address

It may be necessary or desirable at times to load code into one area of memory and run it in
another. For example, you may have performance–critical code in a ROM–based system.
The code must be loaded into ROM but would run much faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive, you can
optionally direct the linker to allocate a section twice: once to set its load address and again
to set its run address. For example:

.fir: load = ROM, run = RAM

Use the load keyword for the load address and the run keyword for the run address.

8.8.1 Specifying Two Addresses

The load address determines where a loader will place the raw data for the section. Any
references to the section (such as labels in it) refer to its run address. The application must
copy the section from its load address to its run address; this does not happen automatically
just by specifying a separate run address.

If you provide only one allocation (either load or run) for a section, the section is allocated
only once and will load and run at the same address. If you provide both allocations, the
section is actually allocated as if it were two different sections of the same size. This means
that both allocations occupy space in the memory map and cannot overlay each other or
other sections. (The UNION directive provides a way to overlay sections)

If either the load or run address has additional parameters, such as alignment or blocking,
list them after the appropriate keyword. After the keyword load, everything having to do with
allocation affects the load address until the keyword run is seen, after which everything
affects the run address. The load and run allocations are completely independent, so any
qualification of one (such as alignment) has no effect on the other. You may also specify run
first, then load. Use parentheses to improve readability. Examples:

.data: load = ROM, align = 32, run = RAM

(align applies only to load)

.data: load = (ROM align 32), run = RAM

(identical to previous example)

.data: run = RAM, align 32,
load = align 16

(align 32 in RAM for run; align 16 anywhere for load)

Linker Description MSP430 Family

8-32

8.8.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so the only address of significance is the
run address. The linker allocates uninitialized sections only once. If you specify both run and
load addresses, the linker warns you and ignores the load address. Otherwise, if you specify
only one address, the linker treats it as a run address, regardless of whether you call it load
or run. Examples:

.bss: load = 0x1000, run = RAM

A warning is issued, load is ignored, space is allocated in RAM. All of the following examples
have the same effect. The .bss section is allocated in RAM.

.bss: load = RAM

.bss: run = RAM

.bss: > RAM

8.8.3 Referring to the Load Address by Using the .label Directive

Any reference to a normal symbol in a section refers to its runtime address. However, it may
be necessary at runtime to refer to a load–time address. In particular, the code that copies a
section from its load address to its run address must know where it was loaded. The .label
directive in the assembler defines a special type of symbol that refers to the load address of
the section. Thus, whereas normal symbols are relocated with respect to the run address,
.label symbols are relocated with respect to the load address.

MSP430 Family Linker Description

8-33

 ;--
 ; define a section to be copied from ROM to RAM
 ;--

.sect ".fir"

.label fir_load ; load address of section
 fir: ; run address of section
 ; <code here> ; code for the section

ret

.label fir_end

 fir_len .equ fir_end - fir_load

 ;--
 ; copy .fir section from ROM into RAM
 ;--

.text
MOV #fir_len, R4
MOV #fir_load, R5
MOV #fir, R6

JMP L2
 L1: MOV @R5+, 0(R6)

INCD R6
 L2: DECD R4

JC L1

 ;--
 ; jump to section, now in RAM
 ;--

call fir ; call runtime address

 Linker Command File

 /***/
 /* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
 /***/
 MEMORY
 {
 ROM: origin=4000h length = 4000h
 RAM: origin=2000h length = 2000h
 }

 SECTIONS
 {
 .text: load = ROM
 .fir: load = ROM, run = RAM
 }

Example 8.5: Copying a Section From ROM to RAM

Linker Description MSP430 Family

8-34

The figure illustrates the runtime execution of the last example.

.text

.fir (loads here)

.fir (relocated to
run here)

fir_load:

fir_end:

fir:

ROM

RAM Application copies
section at runtime

Figure 8.3: Runtime Execution

MSP430 Family Linker Description

8-35

8.9 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and UNION. Unioning
output sections causes the linker to allocate the same run address to the sections. Grouping
output sections causes the linker to allocate them contiguously in memory.

8.9.1 Overlaying Sections With the UNION Statement

For some applications, you may wish to allocate more than one section to run at the same
address; for example, you may have several routines you want in on–chip RAM at various
stages of the program's execution. Or you may want several data objects that you know will
not be active at the same time to share a block of memory. The UNION statement within the
SECTIONS directive provides a way to allocate several sections at the same run address.

 SECTIONS
 {
 .text: load = ROM
 UNION: run = RAM
 {

.bss1: { file1.obj(.bss) }

.bss2: { file2.obj(.bss) }
 }
 .bss3: run = RAM { globals.obj(.bss) }
 }

Example 8.6: Illustration of the Form of the UNION Statement

Linker Description MSP430 Family

8-36

.text

ROM

RAM

.bss2
.bss1

.bss3

Figure 8.4: Runtime Memory Allocation

In the example on the page before, the .bss sections from file1.obj and file2.obj are allocated
at the same address in RAM. The union occupies as much space in the memory map as its
largest component. The components of a union remain independent sections; they are
simply allocated together as a unit.

Allocation of a section as part of a union affects only its run address. Under no
circumstances can sections be overlaid for loading. If an initialized section is a union
member (an initialized section has raw data, such as .text), its load allocation must be
separately specified. The next example illustrates this.

MSP430 Family Linker Description

8-37

 UNION run = RAM

 {

 .text1: load = ROM, { file1.obj(.text) }

 .text2: load = ROM, { file2.obj(.text) }

 }

Example 8.7: Illustration of Separate Load Addresses for UNION Sections

.text 1 (load)

.text 2 (load)

ROM

RAM

.text 2 (run) copies at runtime
.text 1 (run)

Figure 8.5: Load and Run Memory Allocation

Since the .text sections contain data, they cannot load as a union, although they can be run
as a union. Therefore, each requires its own load address. If you fail to provide a load
allocation for an initialized section within a UNION, the linker issues a warning and allocates
load space anywhere it fits in configured memory.

Uninitialized sections are not loaded and do not require load addresses.

Linker Description MSP430 Family

8-38

The UNION statement applies only to allocation of run addresses, so it is redundant to
specify a load address for the union itself. For purposes of allocation, the union is treated as
an uninitialized section: any one allocation specified is considered a run address, and, if both
are specified, the linker issues a warning and ignores the load address.

8.9.2 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces several output sections to be
allocated contiguously. For example, assume that a section named term_rec contains a
termination record for a table in the .data section. You can force the linker to allocate .data
and term_rec together:

SECTIONS
{

.text /* Normal output section */

.bss /* Normal output section */
GROUP 1000h : /* Specify a group of sections */
{

.data /* First section in the group */
term_rec /* Allocated immediately after .data */

}
}

You can use binding, alignment, or named memory to allocate a GROUP in the same way a
single output section is allocated. In the preceding example, the GROUP is bound to address
1000h. This means that .data is allocated at 1000h, and term_rec follows it in memory.

Note: You Cannot Specify Addresses for Sections Within a Group

When you use the GROUP option, binding, alignment, or allocation into named memory
can be specified for the group only. You cannot use binding, named memory, or alignment
for sections within a group.

MSP430 Family Linker Description

8-39

8.11 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining,
and allocating sections. Any memory locations or sections that you choose not to specify,
however, must still be handled by the linker. The linker uses default algorithms to build and
allocate sections within the specifications you supply.

8.11.1 Default Allocation

If you do not use any MEMORY or SECTIONS directives, the linker acts as though the
following definitions were specified:

MEMORY
{

RAM : origin = 200h length = 100h
ROM : origin = 0F000h length = 1000h

}
SECTIONS
{

.bss : > RAM

.text : > ROM

.data : > ROM

}

All .bss input sections are concatenated to form one .bss output section linked into. All .data
input sections are combined to form a .data output section, which is linked into ROM. All .text
input sections are concatenated to form a .text output section, which is linked into ROM
starting at location 0F000h.

Unless you specify otherwise with a MEMORY directive, the linker assumes the
configuration specified above. That is, the only memory that the linker uses to build your
program is:

• 256 bytes starting at location 0200h,

• 4K bytes starting at location 0F000h.

If there are additional input sections in the input files (specifically, named sections), the linker
links them in after the default sections have been linked. Input sections that have the same
name are combined into a single output section with this name. The linker allocates these
additional output sections into memory wherever there is room. Usually, it is desirable to use
explicit SECTIONS directives to tell the linker where to place named sections.

Note: The SECTIONS Directive

If a SECTIONS directive is specified, the linker performs no part of the default allocation.
Allocation is performed according to the rules specified by the SECTIONS directive and
the general algorithm described below.

Linker Description MSP430 Family

8-40

8.11.2 General Rules for Forming Output Sections

An output section can be formed in one of two ways:

Rule 1 As the result of a SECTIONS directive definition.

Rule 2 By combining input sections with the same names into output sections that are not
defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this definition
completely determines the section’s contents.

An output section can also be formed when input sections are encountered that are not
specified by any SECTIONS directive (rule 2). In this case, the linker combines all such input
sections that have the same name into an output section with this name. For example,
suppose the files f1.obj and f2.obj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section to contain them. The linker combines
the two Vectors sections from the input files into a single output section named Vectors,
allocates it into memory, and includes it in the output file.

After the linker determines the composition of all the output sections, it must allocate them
into configured memory. The MEMORY directive specifies which portions of memory are
configured, or if there is no MEMORY directive, the linker uses the default configuration.

The linker’s allocation algorithm attempts to minimize memory fragmentation. This allows
memory to be used more efficiently and increases the probability that your program will fit
into memory. This is the algorithm:

1) Output sections for which you have supplied a specific binding address are placed in
memory at that address.

2) Output sections that are included in a specific, named memory range or that have
memory attribute restrictions are allocated. Each output section is placed into the first
available space within the named area, considering alignment where necessary.

3) Output sections that have zero length are allocated at the beginning of the first
appropriate memory area unless they are part of a group.

4) Any remaining sections are allocated in the order in which they are defined. Sections not
defined in a SECTIONS directive are allocated in the order in which they are
encountered. Each output section is placed into the first available memory space,
considering alignment where necessary.

MSP430 Family Linker Description

8-41

8.12 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and NOLOAD. These
types affect the way that the program is treated when it is linked and loaded. For example:

SECTIONS
{

sec1: load = 2000h, type = DSECT {f1.obj}
sec2: load = 4000h, type = COPY {f2.obj}
sec3: load = 6000h, type = NOLOAD {f3.obj}

}

• The DSECT type creates a “dummy section" that has the following qualities:

• It is not included in the output section memory allocation. It takes up no memory and
is not included in the memory map listing.

• It can overlay other output sections, other DSECTs, and unconfigured memory.

• Global symbols defined in a dummy section are relocated normally. They appear in
the output module's symbol table with the same value they would have if the DSECT
had actually been loaded. These symbols can be referenced by other input sections.

• Undefined external symbols found in a DSECT cause specified archive libraries to be
searched.

• The section's contents, relocation information, and line number information are not
placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated, but all the
symbols are relocated as though the sections were linked at address 2000h. The other
sections can refer to any of the global symbols in sec1.

• A COPY section is similar to a DSECT section, except that its contents and associated
information are written to the output module.

• A NOLOAD section differs from a normal output section in one respect: the section's
contents, relocation information, and line number information are not placed in the output
module. The linker allocates space for it, it appears in the memory map listing, etc.

Linker Description MSP430 Family

8-42

8.13 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign
values to them at link time. You can use this feature to initialize a variable or pointer to an
allocation–dependent value.

8.13.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements
in the C language:

symbol = expression; assigns the value of expression to symbol
symbol + = expression; adds the value of expression to symbol
symbol - = expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression
symbol / = expression; divides symbol by expression

The symbol should be defined externally in the program. If it is not, the linker defines a new
symbol and enters it into the symbol table. Assignment statements must be terminated with
a semicolon.

The linker processes assignment statements after it allocates all the output sections.
Therefore, if an expression contains a symbol, the address used for that symbol reflects the
symbol's address in the executable output file.

For example, suppose a program reads data from one of two tables identified by two
external symbols, Table1 and Table2. The program uses the symbol cur_tab as the address
of the current table. cur_tab must point to either Table1 or Table2. You could accomplish this
in the assembly code, but you would need to reassemble the program in order to change
tables. Instead, you can use a linker assignment statement to assign cur_tab at link time:

prog.obj /* Input file */
cur_tab = Table1; /* Assign cur_tab to one of the tables */

8.13.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the SPC during
allocation. The linker's “ . " symbol is analogous to the assembler's "$" symbol. The “ . "
symbol can be used only in assignment statements within a SECTIONS directive because “
. " is meaningful only during allocation, and SECTIONS controls the allocation process.

For example, suppose a program needs to know the address of the beginning of the .data
section. By using the .global directive, you can create an external undefined variable called
Dstart in the program. Then, assign the value of “." to Dstart:

SECTIONS
{

.text: {}

.data: { Dstart = .; }

.bss: {}
}

MSP430 Family Linker Description

8-43

This defines Dstart to be the ultimate linked address of the .data section. (dstart is assigned
before .data is allocated.) The linker will relocate all references to Dstart.

A special type of assignment assigns a value to the “." symbol. This adjusts the location
counter within an output section and creates a hole between two input sections. Any value
assigned to “." to create a hole is relative to the beginning of the section, not to the address
actually represented by “.".

8.13.3 Assignment Expressions

These rules apply to linker expressions:

• Expressions can contain global symbols, constants, and the C language operators listed
in the next table.

• All numbers are treated as long (32–bit) integers.

• Constants are identified by the linker in the same manner as they are by the assembler.
That is, numbers are recognized as decimal unless they have a suffix (H or h for
hexadecimal and Q or q for octal). C language prefixes are also recognized (0 for octal
and 0x for hex). Hexadecimal constants must begin with a digit. No binary constants are
allowed.

• Symbols within an expression have only the value of the symbol's address. No type–
checking is performed.

• Linker expressions can be absolute or relocatable. If an expression contains any
relocatable symbols (and zero or more constants or absolute symbols), it is relocatable.
Otherwise, the expression is absolute. If a symbol is assigned the value of a relocatable
expression, the symbol is relocatable; if it is assigned the value of an absolute
expression, the symbol is absolute.

The linker supports the C language operators listed in the table in order of precedence.
Operators in the same group have the same precedence. Besides the operators listed in the
table, the linker also has an align operator that allows a symbol to be aligned on an n–byte
boundary within an output section (n is a power of 2). For example, the expression

. = align(16);

aligns the SPC within the current section on the next 16–byte boundary. Because the align
operator is a function of the current SPC, it can be used only in the same context as “." —
that is, within a SECTIONS directive.

Linker Description MSP430 Family

8-44

Group 1 (Highest Precedence) Group 6

!
~
-

Logical not
Bitwise not
Negative

& Bitwise AND

Group 2 Group 7

*
/

%

Multiplication
Division
Mod

| Bitwise OR

Group 3 Group 8

+
-

Addition
Minus

&& Logical AND

Group 4 Group 9

>>
<<

Arithmetic right shift
Arithmetic left shift

|| Logical OR

Group 5 Group 10 (Lowest Precedence)

==
! =
>
<

< =
> =

Equal to
Not equal to
Greater than
Less than
Less than or equal to
Greater than or equal to

=
+ =
- =
* =
/ =

Assignment
A + = B ® A = A + B
A - = B ® A = A - B
A * = B ® A = A * B
A / = B ® A = A / B

Table 8.2: Operators in Assignment Expressions

8.13.4 Symbols Defined by the Linker

The linker automatically defines several symbols that a program can use at runtime to
determine where a section is linked. Since these symbols are external, they appear in the
link map. Each symbol can be accessed in any assembly language module if it is declared
with a .global directive. Values are assigned to these symbols as follows:

.text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
 (It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

MSP430 Family Linker Description

8-45

8.14 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have
nothing linked into them. These areas are called holes. In special cases, uninitialized
sections can also be treated as holes. This section describes how the linker handles such
holes and how you can fill holes (and uninitialized sections) with values.

8.14.1 Initialized and Uninitialized Sections

There are two guidelines to remember about the contents of an output section. An output
section contains either:

• Raw data for the entire section, or

• No raw data.

A section that has raw data is said to be initialized. This means that the object file contains
the actual memory image contents of the section. When the section is loaded, this image is
loaded into memory at the section’s specified starting address. The .text and .data sections
always have raw data if anything was assembled into them. Named sections defined with
the .sect assembler directive also have raw data.

By default, the .bss section and sections defined with the .usect directive have no raw data
(they are uninitialized). They occupy space in the memory map but have no actual
contents. Uninitialized sections typically reserve space in RAM for variables. In the object
file, an uninitialized section has a normal section header and may have symbols defined in it;
no memory image, however, is stored in the section.

8.14.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the
linker to leave extra space between input sections within an output section. When such a
hole is created, the linker must follow the first guideline (above) and supply raw data for the
hole.

Holes can be created only within output sections. There can also be space between output
sections, but such spaces are not holes.

To create a hole in an output section, you must use a special type of linker assignment
statement within an output section definition. The assignment statement modifies the SPC
(denoted by “ . ") by adding to it, assigning a greater value to it, or aligning it on an address
boundary.

Linker Description MSP430 Family

8-46

The following example uses assignment statements to create holes in output sections:

SECTIONS
{

outsect:
{

 file1.obj(.text)
 . += 100h; /* Create a hole with size 100h */
 file2.obj(.text)
 . = align(16); /* Create a hole to align the SPC */
 file3.obj(.text)
 }
}

The output section outsect is built as follows:

• The .text section from file1.obj is linked in.

• The linker creates a 256–byte hole.

• The .text section from file2.obj is linked in after the hole.

• The linker creates another hole by aligning the SPC on a 16–byte boundary.

• Finally, the .text section from file3.obj is linked in.

All values assigned to the “ . " symbol within a section refer to the relative address within the
section. The linker handles assignments to the “ . " symbol as if the section started at
address 0 (even if you have specified a binding address). Consider the statement . =
align(16) in the example. This statement effectively aligns file3.obj .text to start on a 16–word
boundary within outsect. If outsect is ultimately allocated to start on an address that is not
aligned, file3 .text will not be aligned, either.

Expressions that decrement “ . " are illegal. For example, it is invalid to use the -= operator in
an assignment to “ . ". The most common operators used in assignments to “ . " are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use
the following statements to create a hole at the beginning or end of the output section. For
example:

.text: { .+= 100h; } /* Hole at the beginning */

.data: {
 *(.data)
 . += 100h; } /* Hole at the end */

MSP430 Family Linker Description

8-47

Another way to create a hole in an output section is to combine an uninitialized section with
an initialized section to form a single output section. In this case, the linker treats the
uninitialized section as a hole and supplies data for it. Here is an example of creating a hole
in this way:

SECTIONS
{

outsect:
{

file1.obj(.text)
file1.obj(.bss) /* This becomes a hole */
}

}

Because the .text section has raw data, all of outsect must also contain raw data (first
guideline). Therefore, the uninitialized .bss section becomes a hole.

Note that uninitialized sections become holes only when they are combined with initialized
sections. If several uninitialized sections are linked together, the resulting output section is
also uninitialized.

8.14.3 Filling Holes

Whenever there is a hole in an initialized output section, the linker must supply raw data to
fill it. The linker fills holes with a 16–bit fill value that is replicated through memory until it fills
the hole. The linker determines the fill value as follows:

1) If the hole is formed by combining an uninitialized section with an initialized section, you
can specify a fill value for the uninitialized section. Follow the section name with an =
sign and a 16–bit constant. For example:

SECTIONS
{

 outsect:
{

file1.obj(.text)
file2.obj(.bss) = 0FFh /* Fill this hole */

} /* with 00FFh */
}

2) You can also specify a fill value for all the holes in an output section by using the fill
keyword. For example:

SECTIONS
{

outsect: fill = 0FF00h /* This fills holes */
/* with 0FF00h */

{
. += 10h; /* This creates a hole */
file1.obj(.text)
file1.obj(.bss) /* This creates another hole */

}
}

Linker Description MSP430 Family

8-48

3) If you do not specify an initialization value for a hole, the linker fills the hole with the value
specified with -f. Suppose the command file link.cmd contains the following SECTIONS
directive. For example:

SECTIONS
{

.text: { .= 100; } /* Create a 100–word hole */
}

Now invoke the linker with the -f option:
lnk430 -f 0FFFFh link.cmd

This fills the hole with 0FFFFh.

4) If you do not invoke the linker with the -f option, the linker fills holes with 0s.

Whenever a hole is created and filled in an initialized output section, the hole is identified in
the link map along with the value the linker uses to fill it.

8.14.4 Explicit Initialization of Uninitialized Sections

An uninitialized section becomes a hole only when it is combined with an initialized section.
When uninitialized sections are combined with each other, the resulting output section
remains uninitialized and has no raw data in the output file.

However, you can force the linker to initialize an uninitialized section by specifying an explicit
fill value for it in the SECTIONS directive. This causes the entire section to have raw data
(the fill value). For example:

SECTIONS
{

.bss: fill = 1234h /* Fills .bss with 1234h */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.

MSP430 Family Linker Description

8-49

8.14.5 Examples of Using Initialized Holes

The MSP430X201 device has 4K bytes of program memory, starting at location 0F000h. The
top bytes of this area are reserved for interrupt vectors. Suppose you want to link the .text
sections from three object files into a .text output section that begins at address 0F000h.
Suppose also that you have a section of initialized interrupt vectors called int_vecs that you
want to link at address 0FFE0h. You could fill the space between the end of the .text section
and the beginning of the interrupt vectors; the figure shows the space filled with a 1–byte fill
value of 0EFh and illustrates the desired memory map for program memory.

.text

Vectors

Fill with
0EFh

0F000h

0FFE0h
0FFFFh

Figure 8.6: Initialized Hole

To obtain the configuration shown in the figure, you must create one large output section that
has .text at the beginning, int_vecs at the end, and a hole between filled with 0EFh:

SECTIONS
{

prog 0F000h :fill = OEFEFh /* Define prog and start at 0F000h and */
{ /* Specify a fill value */
file1.obj(.text) /* Link .text sections from each file */
file2.obj(.text)
file3.obj(.text)
. = 0FE0h; /* Create hole to 0FE0h (0FFE0h abs) */
file1.obj(int_vecs) /* Link in the vectors section */

}
}

The fill value must be a 16–bit constant. To have the value 0EFh in each byte, the fill value
was specified as 0EFEFh.

Notice that the value 0FE0h, which is assigned to the section program counter (.), is
relative to the beginning of the section. Because the section begins at 0F000h, the hole is
actually created from the end of the .text section to address 0FFE0h.

Linker Description MSP430 Family

8-50

8.15 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is
known as partial linking, or incremental linking. Partial linking allows you to partition large
applications, link each part separately, and then link all the parts together to create the final
executable program.

Follow these guidelines for producing a file that you will relink:

• Intermediate files must have relocation information. Use the -r option when you link the
file the first time.

• Intermediate files must have symbolic information. By default, the linker retains symbolic
information in its output. Do not use the -s option if you plan to relink a file, because -s
strips symbolic information from the output module.

• Intermediate link steps should be concerned only with the formation of output sections
and not with allocation. All allocation, binding, and MEMORY directives should be
performed in the final link step.

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the -r option to retain relocation information in the output
file tempout1.out.

lnk430 -r -o tempout1 file1.com

file1.com contains:

SECTIONS
{

ss1: {
f1.obj
f2.obj
 .
 .
 .
fn.obj

 }
}

MSP430 Family Linker Description

8-51

Step 2: Link the file file2.com; use the -r option to retain relocation information in the output
file tempout2.out.

lnk430 -r -o tempout2 file2.com

file2.com contains:

SECTIONS
{

ss2: {
g1.obj
g2.obj
 .
 .
 .
gn.obj
}

}

Step 3: Link tempout1.out and tempout2.out:

lnk430 -m final.map -o final.out tempout1.out tempout2.out

Linker Description MSP430 Family

8-52

8.17 Linker Example

This example links a program called demo.out. There are three object modules, demo.obj,
ctrl.obj, and tables.obj.

Assume the following memory configuration:

Address Range Memory Contents

200h to 2FFh internal RAM

1F00h to 1FFFh Data EEPROM

2000h to 3FFFh 8K external RAM

0F000h to 0FFFFh 4K internal program ROM

The program is built from the following elements:

• Executable code, contained in the .text sections of demo.obj and ctrl.obj, must be linked
into program ROM. The symbol SETUP must be defined as the program entry point.

• A set of interrupt vectors, contained in the int_vecs section of tables.obj, must be linked
at address 0FFE0h in program ROM.

• A table of coefficients, contained in the .data section of tables.obj, must be linked into
.EEPROM. The remainder of EEPROM must be initialized with the value 0A26Eh.

• A set of variables, contained in the .bss section of ctrl.obj, must be linked into the RAM.
These variables must be preinitialized to 0FFFFh.

• Another .bss section in demo.obj must be linked into external RAM.

The next two figures illustrate the linker command file and the map file for this example.

MSP430 Family Linker Description

8-53

/**/
/* Specify the Linker Options */
/**/
-e SETUP /* Define the entry point */
-o demo.out /* Name the output file */
-m demo.map /* Create a load map */
/**/
/* Specify the Input Files */
/**/
demo.obj
ctrl.obj
tables.obj
/**/
/* Specify the Memory Configuration */
/**/
MEMORY
{
 RAM : origin = 0200h length = 0100h
 EEPROM : origin = 1F00h length = 0100h
 RAMEXT : origin = 2000h length = 2000h
 ROM : origin = 0F000h length = 1000h
}
/**/
/* Specify the Output Sections */
SECTIONS
 .text: > ROM /* Link all .text sections into ROM */

 int_vecs 0FFE0h: {} /* Link interrupts at FFE0h */

 .data: /* Link the data sections */
 {
 tables.obj(.data)
 . = 100h; /* Create a hole to end of the block */
 } = 0A26Eh > EEPROM /* Fill and link into EEPROM */

 ctrl_vars: /* Create new section for ctrl vars */
 {
 ctrl.obj(.bss)
 } = 0FFFFh > RAM /* Fill with 0FFFFh and link to RAM */

 .bss > RAMEXT /* Link all remaining .bss sections */
}
/**/
/* End of Linker Command File */
/**/

Figure 8.7: Linker Command File, demo.cmd

Now invoke the linker by entering the following command:

lnk430 demo.cmd

This creates the map file shown in the next figure and an output file called demo.out that can
be run on the MSP430.

Linker Description MSP430 Family

8-54

MSP430 COFF Linker Version 1.00

Thu Feb 10 09:21:32 1994
OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: "SETUP" address: 0000f000

MEMORY CONFIGURATION
 name origin length attributes fill
 RAM 00000200 000000100 RWIX
 EEPROM 00001f00 000000100 RWIX
 RAMEXT 00002000 000002000 RWIX
 ROM 0000f000 000001000 RWIX

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
.text 0 0000f000 00000010
 0000f000 00000008 demo.obj (.text)
 0000f008 00000000 tables.obj (.text)
 0000f008 00000008 ctrl.obj (.text)

int_vecs 0 0000ffe0 00000020
 0000ffe0 00000020 tables.obj (int_vecs)

.data 0 00001f00 00000100
 00001f00 00000008 tables.obj (.data)
 00001f08 000000f8 --HOLE-- [fill = a26e]
 00002000 00000000 ctrl.obj (.data)
 00002000 00000000 demo.obj (.data)

ctrl_var 0 00000200 00000004
 00000200 00000004 ctrl.obj (.bss) [fill = ffff]

.bss 0 00002000 00000004 UNINITIALIZED
 00002000 00000004 demo.obj (.bss)
 00002004 00000000 tables.obj (.bss)

GLOBAL SYMBOLS
address name address name
00002000 .bss 00001f00 .data
00001f00 .data 00002000 edata
0000f000 .text 00002000 .bss
0000f000 SETUP 00002004 end
00002000 edata 0000f000 .text
00002004 end 0000f000 SETUP
0000f010 etext 0000f010 etext

[7 symbols]

Figure 8.8: Output Map File, demo.map

