250 Watt Off-Line Forward Converter — Design Review

Topic Categories:
Basic Switching Technology
Design Reviews – Full Power Supply
Two-Switch Forward

Reproduced from
1983 Unitrode Power Supply Design Seminar
SEM100, Topic 4
TI Literature Number: SLUP057

© 1983 Unitrode Corporation
© 2011 Texas Instruments Incorporated

Power Seminar topics and online power-training modules are available at:
power.ti.com/seminars
250 Watt Off-Line Forward Converter — Design Review

Raoji Patel

This paper gives a practical example of the design of an off-line switching power supply with forward converter topology. Topics include transformer and filter inductor design, proportional base drive, component selection, output filter design, and closing the control loop using the new Unitrode UC1524A control circuit.

POWER SUPPLY SPECIFICATIONS:

TOPOLOGY: Forward Converter with Proportional Base Drive

LINE INPUT: 117 Volts +/- 15% (99-135V), 60Hz
230 Volts +/- 15% (195-265V), 50Hz

OUTPUT: Voltage: 5 Volts
Current: 5 to 50 Amperes
Current Limit: 60 Amperes Short Circuit
Ripple Voltage: 100mV p-p maximum
Line Regulation: +/- 1%
Load Regulation: +/- 1%

OTHER FEATURES: Efficiency: 75%
Line Isolation: 3750 Volts
Switching Frequency: 40KHz

Figure 1. Block Diagram of the Switching Power Supply
THE COMPLETE POWER SUPPLY CIRCUIT

The complete 250 watt switching power supply schematic is given in Figure 2. This supply meets all of the specification requirements defined on page 1.

LINE INPUT AC TO DC CONVERSION

The input rectifier/filter section converts the AC line voltage into a crudely filtered and unregulated DC voltage, \(V_{in} \), which powers the downstream switching regulator. The input section is configured as a full-wave bridge when operating from the 230 volt line, and as a voltage doubler when operated from 117 volts. This provides approximately the same \(V_{in} \) range (200-380 volts) for the switching regulator with either line voltage. Minimum input voltage, \(V_{min} \), is 200 volts at low line.

The design of the input section is covered extensively in Section I1 of the Design Reference Addenda at the end of this book. The power input required in this application equals power output (250W) divided by efficiency (75%), or 333 watts. Circuit values for this application can be obtained by multiplying the 100 watt input values given in Table I of Section I1 by \(P_{in}/100 = 3.33 \), using the worst case voltage doubler configuration:

\[
C_1 = C_2 = 3.33(160) = 533 \ \mu F \quad \text{(use 600 } \mu F) \tag{1}
\]

\[
I_{chg} = 3.33(1.126) = 3.75 \ \text{Amps RMS AC} \tag{2}
\]

The switching regulator draws 40 KHz rectangular current pulses which discharge the input capacitors. Peak discharge current, \(i_{dis} \), occurs at \(V_{min} \) when the duty cycle, \(D \), is maximum (50%):

\[
i_{dis} = P_{in}/(V_{min}D) = 333/(200 \cdot 0.5) = 3.33 \ \text{A peak} \tag{3}
\]

The RMS AC component of the discharge current, \(i_{dis} \), which flows through the input capacitors at worst case 50% duty cycle is:

\[
i_{dis} = (i_{dis})/2 = 3.33/2 = 1.67 \ \text{Amps RMS AC} \tag{4}
\]

The total RMS AC current rating required for the input capacitors is calculated from Equation 8 of Section I1:

\[
I_{CAP} = \sqrt{I_{chg}^2 + i_{dis}^2} = \sqrt{3.75^2 + 1.67^2} \tag{5}
\]
SWITCHING CIRCUIT TOPOLOGY

The two transistor forward converter configuration shown in Figure 3 was used in this 250 watt switching power supply for the following reasons:

1. Transistor voltage ratings are half the voltage required in a comparable single transistor circuit (400V vs. 800V). Only 1/4 the silicon chip area is required for the same current rating, and the switching speeds will be twice as fast.

2. The snubber networks are for load line shaping only and are not required to absorb all the energy stored in the transformer leakage reactance. Instead, clamp diodes D5 and D6 conserve most of this energy by returning it to the input, improving the efficiency.

3. Closed-loop stability is easier to achieve than with a flyback converter because there is no right half plane zero.

4. Filter capacitor requirements are much less severe than in boost or flyback converters because of the output filter inductor.

5. Transformer construction is simplified because there is no need for a clamp winding (N9 is used for the auxiliary supply).

6. Reliability is improved because faster transistors result in reduced switching losses, and each transistor dissipates only one half of these reduced losses.

Figure 3. Two Transistor Forward Converter
Disadvantages of this topology are:

1. Two transistors are required instead of one (but cost may be less).

2. Restricted to less than 50% duty cycle to permit core reset. This results in poorer transformer utilization.

3. Added cost of filter inductor, which is not required for the flyback converter.

SPECIFYING THE SWITCHING TRANSISTORS

Maximum peak primary current flowing through the transistors, \(I_{CM} \), is the same as \(i_d \) from Equation 3, or 2.33 A.

The transistors should have good VCE(sat) and switching speeds at a collector current of at least 4.0 amperes, which includes an allowance for unusual conditions such as short circuit current. (Disregard spec sheet "maximum current ratings" which are inflated for competitive marketing reasons, and focus on the specified test conditions.)

The collector voltage rating must be greater than maximum \(V_{in} \), or 380 volts in this application. Conservatively, this should be the BVCEO rating, but with careful load line shaping to make certain the transistor is completely off before voltage is applied, a less conservative designer might specify BVCEX greater than \(V_{in(max)} \).

The UMT13007 satisfies the above requirements, with BVCEO of 400V, VCE(sat) less than 2.0V at 5A, and worst case fall time of 400ns under the proportional base drive conditions provided.

SNUBBER NETWORK DESIGN

The turn-off snubber networks shown across each transistor in Figure 3 provide shaping of the load line to ensure that it remains below the reverse bias safe operating area (RBSOA) of the transistors. Capacitors \(C_3 \) and \(C_4 \) accomplish this by holding the voltage across each transistor low during current turn-off. The snubber capacitors thus absorb the turn-off transition energy that otherwise would have been dissipated in the transistors (see Figure 4).

\[
C_3 = C_4 = \frac{I_{CM} \cdot f}{2 \cdot V_{in(max)}} \\
= \frac{3.33 \times 4 \times 10^{-6}}{2 \times 380} = 0.00175 \text{ \mu F} \quad (\text{use} \ 0.0015 \text{ \mu F})
\]
Resistors R_2 and R_3 are designed to discharge the snubber capacitors with a discharge time constant of one-half the minimum on time, $t_{on(min)}$.

$$t_{on(min)} = \frac{D(max) \cdot V_{in(min)}}{f} = \frac{0.5 \cdot 200}{40,000 \cdot 380} = 6.58 \mu s$$ \hspace{1cm} (7)

$$R_2 = R_3 = \frac{t_{on(min)}}{2C_3} = \frac{6.58 \times 10^{-6}}{2 \times 1.5 \times 10^{-9}} = 2.2K$$

Maximum power dissipation in each resistor:

$$P_{R2} = P_{R3} = \frac{1}{2} C_2 V_{in(max)}^2 f$$

$$= \frac{1.5 \times 10^{-9}}{2} \times 380^2 \times 40,000 = 4.3 \text{ watts}$$

POWER TRANSFORMER DESIGN

The design of the 40KHz inverter transformer is detailed in Appendix A. A primary to secondary turns ratio of 148/9, or 15.33, ensures that 5 volts output is provided with minimum V_{in} of 200 volts at 50% duty cycle, including voltage drops in rectifiers, transistors and windings.

Transformer winding N_0 is used to provide an auxiliary supply to power the control and base drive circuits. This makes good use of the energy stored in the transformer primary inductance.

OUTPUT FILTER DESIGN

The output filter and its associated waveforms are shown in Figure 5. The filter inductor calculation is based on the maximum "off" time:

$$D(min) = D(max) \frac{V_{in(min)}}{V_{in(max)}} = 0.5 \frac{200}{380} = .263$$ \hspace{1cm} (9)

$$t_{off(max)} = \frac{1-D(min)}{f} = \frac{1-.263}{40,000} = 18.4 \mu s$$ \hspace{1cm} (10)
The inductance required to prevent discontinuous mode operation depends upon the minimum load current:

$$\Delta I_{L(max)} = 2I_o(min) = 2 \times 5 = 10 \text{A}$$ \hspace{1cm} [11]

$$L = \frac{(V_o + V_F)_{t_{off}(max)}}{\Delta I_{L(max)}} = \frac{(5 + 0.6)18.35}{10} = 10 \text{ \mu H}$$ \hspace{1cm} [12]

The capacitance required to achieve the output ripple voltage specification of 0.1 volts is:

$$C_o = \frac{1}{2} \frac{\Delta I_{L(max)}}{2f_v_o} = \frac{10}{8 \times 40,000 \times 0.1} = 312 \text{ \mu F}$$ \hspace{1cm} [13]

The maximum ESR of the capacitor is:

$$ESR = \frac{V_o}{\Delta I_{L(max)}} = 0.1/10 = 0.01 \text{ \Omega}$$ \hspace{1cm} [14]

To obtain the necessary ESR requires a capacitor much larger than the 312 microfarads calculated. This design will use three 220 microfarad solid tantalum capacitors, Mallory THF227M01DP1G, in parallel. A single 14,000 microfarad aluminum electrolytic capacitor, Mallory CG0143M10R2C3PL could also be used.

With the tantalum capacitor, the resonant frequency of the filter is 2KHz. With the aluminum electrolytic, the resonant frequency is reduced to 425Hz, changing the closed-loop design.
CLOSING THE CONTROL LOOP

The Unitrode UC1524A is used for the control circuit. It has additional features such as pulse by pulse current limiting and high current and voltage output capability (200mA, 60V) compared with the SG1524. The UC1524A reference is trimmed to +/- 1% which makes it possible to avoid using a voltage-setting potentiometer in many instances.

The control to output transfer function, \(\frac{dV_o}{dV_c} \), shown in Figure 6, includes the cascaded gain of the sawtooth modulator within the UC1524A control IC, the power switching circuit, and the output filter characteristic, \(H_e(s) \).

In the control IC, a control voltage \(V_c \) is compared with sawtooth ramp voltage \(V_s \) (2.5 volts) to establish the drive pulse width to the power switches. For the forward converter, only one of the two alternating outputs of the UC1524A is used so as to limit the duty cycle to 50% maximum and allow for transformer core reset:

\[
D = \frac{0.5V_c}{V_s} = 0.5\frac{V_c}{2.5} = \frac{V_c}{5}
\]

(15)

The forward converter is a member of the buck regulator family. Transformer turns ratio \(n = 16.44 \):

\[
V_o = \frac{V_{in}}{n}D = \frac{V_{in}V_c}{n 2V_s}
\]

(16)

Figure 6. Control to Output Transfer Function
LC Filter and Modulator
The low frequency control to output transfer characteristic is obtained by differentiating with respect to \(V_c \):

\[
\frac{\partial V_o}{\partial V_c} = \frac{V_{in}}{n \Delta V_s} = \frac{380}{15.33 \times 5} = 4.95 = 13.2 \text{ db}
\]

[17]

Note that gain is greatest at maximum \(V_{in} \). The overall control to output transfer characteristic including the filter is:

\[
\frac{\partial V_o}{\partial V_c} = \frac{V_{in}}{n \Delta V_s} H_c(s)
\]

[18]

The filter introduces a two-pole characteristic at its resonant frequency (2 KHz). Above resonance, the gain drops 40 db per decade, and the phase shift becomes -180 degrees. Combined with the -180 degree phase shift of the feedback network, this will cause instability and oscillations unless compensated.

Closing the loop involves feeding back the error voltage from the output terminal of the supply (\(V_o \)) to the IC control voltage port (\(V_c \)) through the UC1524A error amplifier. The approach taken is to make the gain of the feedback network such that the overall loop gain crosses zero db (with adequate phase margin) at one half the switching frequency.

As shown in Figure 6, control to output gain is 13.2 db at low frequencies, rolling off above 2 KHz at -40 db per decade, so that at 20 KHz the control to output gain is 13.2 - 40, or -26.8 db. For overall loop gain of zero, the feedback network gain must be made +26.8 db at 20 KHz.

From 20 KHz down to 2 KHz, there is a net single zero in the feedback network which cancels one of the two filter poles and reduces the phase shift in this region to -270 degrees.

Below the filter resonant frequency the two filter poles are gone. However, the resonant frequency may be less than 2 KHz because of plus tolerances on the filter capacitor. The feedback network is therefore designed to transition from a net single zero to a single pole at 1 KHz, half the resonant frequency.

Figure 7 shows the gain and phase plot of the error amplifier and the overall feedback loop. Figure 8 shows the specific feedback network used to achieve this result.

The high frequency error amplifier gain is set by \(R_2 \) and \(R_3 \). An \(R_3 \) value of 33 K is chosen to minimize amplifier loading:

\[
\frac{A v_1}{R_3} = \frac{26.8}{21.9} = 1.2
\]

[19]

\[
R_2 = \frac{R_3}{A v_1} = \frac{33000}{21.9} = 1500 \Omega
\]

The required error amplifier gain at 1 KHz is:

\[
A v_2 = A v_1 \times 1 \text{ KHz}/20 \text{ KHz} = 21.9 \times 1/20 = 1.095 \text{ (0.8 db)}
\]

[20]
The gain at 1KHz is determined by R_1, R_2 and R_3:

$$A_{v2} = \frac{R_3}{(R_1+R_2)} = \frac{33K}{(R_1+1500)} = 1.095$$ \hspace{1cm} (21)

$$R_1 = 28.6K \text{ (use } 30K)$$
The two zeros at 1KHz which changes the feedback network from a net single zero to single pole are equal to:

\[f_1 = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi R_3 C_2} = 1 \text{ KHz} \]

\[C_1 = 0.0053 \mu F, \quad C_2 = 0.0048 \mu F \]

\(C_1 \) and \(R_1 \) in parallel with \(R_2 \) result in an additional pole at 20KHz. This flattens the error amplifier gain above 20 KHz. The overall phase shift will gradually increase toward 360 degrees, but it doesn't matter because the overall gain is less than one.

An additional pole occurs below 10 Hz. This is the inherent single-pole characteristic of the error amplifier's 5 megohm output impedance loaded by feedback capacitor \(C_2 \).

PROPORTIONAL BASE DRIVE

In Figure 2, transistors Q2 and Q3 and base drive transformer T1 provide proportional drive to the bases of power switching transistors Q4 and Q5. The proportional base drive technique provides excellent performance from high voltage bipolar transistors. It provides large base current pulses for fast turn-on and turn-off, but with modest drive power requirements. Sustaining base drive is provided regeneratively from a collector current winding on the drive transformer. The transistors are never overdriven, even under light load conditions, since the sustaining base drive is proportional to the collector current. Design considerations for the proportional base drive technique are given in Section D1 in the design section at the back of this book.

Referring to the circuit of Figure 2, when Q3 is on, \(R_4 \) establishes 75 mA magnetizing current in drive winding \(N_d \) of T1. When Q3 turns off, the energy stored in T1 drives 150 mA into the base of each transistor. Collector current starting to flow in \(N_c \) provides sustaining base drive. With \(I_C \) of 3.33 A under full load conditions, an additional 667 mA of drive is provided to each base.

While Q3 is off, capacitor C5 charges through Q2 in less than 1 microsecond. Then, when Q3 turns back on, C5 provides a negative base drive pulse of -1.5 A to each transistor, achieving turn-off in less than 1 microsecond.

Drive transformer T1 has a drive winding inductance of 0.7 mH and is designed to saturate at 75 mA. High voltage insulation is not required because all windings are on the line side of the supply.

Core: Ferroxcube 1107P-L00-3B7 Pot Core

\[N_d: \quad 20 \text{ turns AWG34} \]

\[N_b: \quad 5 \text{ turns AWG28x2 (2 wires, one for each base)} \]

\[N_c: \quad 2 \text{ turns 5xAWG28 (5 wires paralleled)} \]
AUXILIARY POWER SUPPLY

A 15 volt auxiliary supply powers the control and driver circuits, obtaining its energy from capacitor C3. Flyback energy is normally provided by T2 through winding Na and D6 to maintain the charge on C3 every switching cycle. However, at initial power-up it is necessary to provide separate means to activate the Vdd supply. Otherwise, the control and driver circuits could not become functional and the supply could not start to switch.

The unique under-voltage lockout feature of the UC1524A facilitates this technique. All of its internal circuits are disabled (except the reference) until the Vdd voltage reaches 8 volts. This holds the standby current to less than 4mA until the 8 volt threshold is reached, and permits C3 to be initially charged through R1 from the unregulated input. Enough energy is stored in C3 to operate the control/drive circuits for several switching cycles, until flyback energy from winding Na can take over and maintain the voltage on C3.

It is also necessary to eliminate base drive to Q3 during initial power-up, otherwise Q3 will draw current through R4 which will prevent C3 from initially charging. This is accomplished by transistor Q1 which disconnects base drive source capacitor C4. When the UC1524A becomes active, its second output turns Q1 on periodically to charge C4.

The amount of energy stored in the power transformer is twice the drive/control circuit requirements. Excess energy is dumped into 15 volt zener diode D7 which establishes the Vdd supply voltage at that level. This also provides a constant clamp voltage across the switching transistors, regardless of line voltage. With good coupling between Na and primary winding Np, it may be possible to eliminate clamp diodes D12 and D13.

OUTPUT VOLTAGE SENSE AND OVERCURRENT SENSE

A small, inexpensive transformer, T3, couples the output voltage to the line side control circuit with high voltage isolation. The transformer is wound on a Ferroxcube 204-T250-3E2A ferrite toroidal core. Primary and secondary windings are both 14 turns AWG32.

During the time the power switching transistors are on, Q6 is on, applying Vo to the primary of T3. Through D2, this provides a real-time feedback voltage to the control circuit across C6. When Q6 is off, D5 clamps the flyback voltage to 15 volts. Core reset is accomplished well before the end of the "off" time, since the "off" time of the forward converter is always more than 50%. All transformer windings then go to zero volts, establishing a DC coupling level. D1 in series with the ground return compensates for the forward voltage drop and temperature coefficient of D2.
Pulse by pulse current limiting is set by sense resistor R10. Primary current is limited to 4A, corresponding to 62A load current.

Transient response of the switching supply is shown in Figure 9 with changes in load from 20A to 60A and back to 20A. This behavior is a large signal phenomenon. It doesn't matter how fast the control loop is, it is temporarily driven into the bounds because the load change is much larger than the output filter inductor current can accommodate in one cycle. Nevertheless, recovery is smooth and there is no evidence of ringing or oscillations, demonstrating the stability of the control loop. Step changes in load current that are small enough for the control loop to remain functional are barely noticeable at the output.

Transient response can be improved by reducing the filter inductor and increasing the filter capacitor size, but this will increase the minimum load current required to keep the inductor current from becoming discontinuous.

Figure 9. Step Change in Output Load
The design procedure used herein is defined in Design Reference Section M5. Symbols, definitions and various core and wire data are given in Reference Sections M1, M2, and M3. Equation references are to Section M5.

Flux Density Excursion

In this forward converter application, the flux excursion is entirely within the first quadrant of the B-H characteristic, from zero flux density toward saturation. With simple duty cycle control, using the UC1524A control IC, it is possible to have nearly twice the normal volt-seconds, $V_{in\text{max}}t_{on\text{max}}$, during startup or after a large step increase in load current. This means that the flux density cannot be permitted to go more than half way toward saturation under normal conditions or the core will saturate under transient conditions.

Saturation flux density for 3C8 power ferrite material is greater than 0.3 Tesla (3000 Gauss), allowing a ΔB of 0.15 T (0 to 0.15 T) in this application. (With volt-second control, available in the UC1840 control IC, a ΔB of 0.3 T would be permissible, significantly reducing the transformer size.)

Core Selection

The core area product, AP, requirements in this application are calculated using Equation 1 and Table I of Section M5 with power input of 333 watts and frequency of 40 KHz.

$$AP = A_{w1}A_{e} = \left(\frac{11.1 \text{ Pin}}{K \Delta B f}\right)^{1.143} = \left(\frac{11.1 \text{ 333}}{0.141 \text{ 0.15 40,000}}\right)^{1.143} = 5.4 \text{ cm}^4$$

This equation is based on the assumptions that the windings occupy 40% of the window area, the primary and secondary windings are of equal area, and the windings are operated at a current density that will result in a temperature rise of $30^\circ C$ with natural convection cooling.

From Table I, Section M1, the EC52 core with an AP of 5.71 cm4 is the obvious choice.

Designing the Windings

The minimum number of primary turns required to support the volt-seconds required for normal operation is calculated from Equation 2 of Section M5:
From Equation 3, the primary to secondary turns ratio is:

\[n = \frac{N_p}{N_s} = 0.9 \frac{D [Vin(min) - VCE(sat)]}{V_o + VF} = 0.45 \frac{200 - 2}{5 + 0.8} = 15.36 \]

Secondary turns from Equation 4:

\[N_s = \text{Integer}(N_p/n) = \text{Integer}(91/15.36) = 6 \text{ turns} \]

Recalculate the primary turns:

\[N_p = 6 \times 15.36 = 92 \text{ turns} \]

RMS primary current from Equation 6:

\[I_p = \frac{I_{in(max)}}{K_t} = \frac{P_{in(max)}}{Vin(min) K_t} = \frac{333}{200 \times 0.71} = 2.34 \text{ A} \]

From Equation 7, the maximum current density for this size core is:

\[J_{max} = 450 A \cdot m^{-1.22} = 450 (5.71)^{-1.22} = 362 \ \Omega/cm^2 \]

The minimum primary wire area, \(A_{xp} \), is:

\[A_{xp} = \frac{I_p(max)}{J_{max}} = \frac{2.34}{362} = 0.0065 \text{ cm}^2 \]

From the Wire Table in Section M2 under 'AREA, Copper', AWG 19 is appropriate.

The maximum RMS secondary current, \(I_s \), occurs at 50% duty cycle:

\[I_s(max) = I_o(max)/1.414 = 50/1.414 = 35.3 \text{ A} \]

Minimum secondary wire area, \(A_{xs} \), is:

\[A_{xs} = \frac{I_s(max)}{J_{max}} = \frac{35.3}{362} = 0.0975 \text{ cm}^2 \]

From the Wire Table, this calls for AWG 7 to 8. Ten AWG 18 wires in parallel will carry the required secondary current and provide a smooth winding with less leakage inductance and acceptable eddy current losses. Copper strip 2.5x.04 cm could also be used.

The number of turns required for the auxiliary winding is:

\[N_a = \frac{V_{dd} N_p}{Vin(min)} = \frac{15 \times 92}{200} = 7 \text{ turns} \]

This will provide enough volt-seconds during flyback to reset the core (back to zero flux density) at 50% maximum duty cycle. AWG 32 wire is adequate to carry the \(V_{dd} \) supply current. This winding should be tightly coupled to the primary.
Double-check the wire fit in the window (neglect \(N_a \)). The total copper area of all windings should be less than 40% of the total window area of the core \((0.40 \times 3.12 = 1.25 \text{ cm}^2 \text{ max})\).

\[
A_w' > N_p A_{xp} + N_s A_{xs} = 92(.0065) + 6 \times 10(.00823) = 1.09 \text{ cm}^2
\]

Calculate Losses and Temperature Rise

The total losses in the windings is calculated from Equation 12. The mean length per turn, \(l_t \), for the EC52 core is 7.3 cm, and AWG 19 wire is .000353 \(\Omega/\text{cm} \) from the Wire Table at 100°C.

\[
P_w = 2 I_p^2 N_p l_t (\Omega/\text{cm}) = 2(2.34)^2 \times 92 \times 7.3 \times .000353 = 2.59 \text{ watts}
\]

The total core losses for 3C8 ferrite are obtained from Figure 1 in Section M3. The flux density axis of this graph assumes the transformer is operating with a symmetrical flux swing about the origin. The forward converter operates asymmetrically, so enter the graph with \(\Delta B/2 \), or .075 T. The resulting 0.1 W/cm\(^3\) must be multiplied by the core volume to obtain the total core loss, \(P_c \).

\[
P_c = .01 \times 18.7 = .187 \text{ watts}
\]

Total transformer losses are:

\[
P_t = P_w + P_c = 2.59 + .187 = 2.78 \text{ watts}
\]

The temperature rise of the core for natural convection cooling is calculated from Equation 14:

\[
\Delta \theta = \frac{850 P_t}{A_s} = \frac{850(2.78)}{91} = 25.9°C
\]

Summarizing the transformer design:

- **Core:** Ferroxcube EC52, 3C8 Ferrite E-E core
- **Np:** 92 turns AWG19
- **Na:** 7 turns AWG32
- **Ns:** 6 turns 10xAWG18 (10 wires paralleled)

The primary and auxiliary windings are tightly coupled. The secondary is insulated with 2mil mylar tape to provide 3750 volt line isolation capability.

Filter Inductor Design

The design of the filter inductor is covered extensively in Unitrode Application Note U68A, in the Unitrode Databook. Using this approach, the inductor design is summarized as follows:

- **Core:** Ferroxcube 4229-3C8 Ferrite Pot Core
- **Winding:** 7 turns 10xAWG17 (10 wires paralleled)
- **Losses:** 2.2 watts
- **Temperature Rise:** 350°C
TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center
Home Page
support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

<table>
<thead>
<tr>
<th>Americas</th>
<th>Phone</th>
<th>+1(972) 644-5580</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Phone</td>
<td>0800-891-2616</td>
</tr>
<tr>
<td>Mexico</td>
<td>Phone</td>
<td>0800-670-7544</td>
</tr>
<tr>
<td></td>
<td>Fax</td>
<td>+1(972) 927-6377</td>
</tr>
<tr>
<td></td>
<td>Internet/Email</td>
<td>support.ti.com/sc/pic/americas.htm</td>
</tr>
</tbody>
</table>

Europe, Middle East, and Africa

<table>
<thead>
<tr>
<th>Phone</th>
<th>International</th>
<th>+49 (0) 8161 80 2121</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Russian Support</td>
<td>+7 (4) 95 98 10 701</td>
</tr>
</tbody>
</table>

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax	+(49) (0) 8161 80 2045
Internet	support.ti.com/sc/pic/euro.htm
Direct Email	asktexas@ti.com

Phone	Domestic	0120-92-3326
Fax	International	+81-3-3344-5317
	Domestic	0120-81-0036
Internet/Email	International	support.ti.com/sc/pic/japan.htm
	Domestic	www.tij.co.jp/pic

Asia

<table>
<thead>
<tr>
<th>Phone</th>
<th>International</th>
<th>+91-80-41381665</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>Toll-Free Number</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>1-800-999-084</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>800-820-8682</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>800-96-5941</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>1-800-425-7888</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>001-803-8861-1006</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>080-551-2804</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>1-800-80-3973</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>0800-446-934</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>1-800-765-7404</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>800-886-1028</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>0800-006800</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>001-800-886-0010</td>
<td></td>
</tr>
</tbody>
</table>

Fax | +(8621) 23073686 |
Email | tiasia@ti.com or ti-china@ti.com |
Internet | support.ti.com/sc/pic/asia.htm |

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

E2E and Unitrode are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated