Switch-mode power converter compensation made easy

Reproduced from
2016 Texas Instruments Power Supply Design Seminar SEM2200

TI Literature Number: SLUP341
© 2016, 2017 Texas Instruments Incorporated

Power Seminar topics and online power training modules are available at ti.com/psds
Switch-mode power converter compensation made easy

Louis Diana
Robert Sheehan
 Agenda

• Compensation design and objectives
• Explanation of poles and zeros
• Power stage characteristics
• Error amplifier and transconductance amplifier
• Isolated feedback with optocoupler
• Compensation examples
• Circuit limitations and other issues
Compensation design and objectives

<table>
<thead>
<tr>
<th>Why do we need feedback and why do we need compensation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Feedback is needed to regulate the output voltage</td>
</tr>
<tr>
<td>- The bandwidth of the control loop determines the response time</td>
</tr>
</tbody>
</table>

Diagram:

- **Power Stage:** Inductor/Transformer, Power Switches, Modulator
- **Compensation**
- **Error Amp**
- **V_{IN}**
- **V_C**
- **V_{OUT}**
- **V_{REF}**
- **Load**
- **Test Signal**
Control loop response

Objective

- Maximize crossover frequency for fastest transient response
- Adjust compensation for best settling behavior

Poor transient response

- Response is under-damped causing oscillatory behavior

Good transient response

- Response is well damped with good settling behavior
Phase margin and gain margin

- Sufficient phase margin is needed to prevent oscillation (45º min.)
- Gain margin goal 10 dB min.
- Slope of −20 dB/decade when passing through 0 dB
- Bandwidth rule of thumb is 1/5 to 1/10 of switching frequency
Poles and zeros

\[H(s) = \frac{1}{1 + \frac{s}{\omega_p}} \]

\[H(s) = \frac{1 + \frac{s}{\omega_z}}{1} \]
Inverted and right-half-plane zeros

<table>
<thead>
<tr>
<th>Inverted zero</th>
<th>Right-half-plane zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H(s) = \frac{1+\frac{\omega_z}{s}}{1}$</td>
<td>$H(s) = \frac{1-\frac{s}{\omega_z}}{1}$</td>
</tr>
</tbody>
</table>

![Graph showing phase and magnitude vs frequency for inverted and right-half-plane zeros](image-url)
Complex conjugate pole and ESR zero

Complex conjugate pole

\[H(s) = \frac{1}{1 + \frac{s}{Q_o \cdot \omega_o} + \frac{s^2}{\omega_o^2}} \]

With ESR zero

\[H(s) = \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{Q_o \cdot \omega_o} + \frac{s^2}{\omega_o^2}} \]

Graphs

- **Gain** and **Phase** vs. **Frequency (Hz)**

- **MAGNITUDE (dB)** and **PHASE (°)**

- **Q = 2**, **Q = 1**, **Q = 0.5**, **Q = 0.25**

Texas Instruments – 2016/17 Power Supply Design Seminar
Control methods and operating modes

| Control methods | • Voltage-mode control
| | • Current-mode control |
| Operating modes | • Fixed frequency
| | • Continuous conduction-mode (CCM) |
| Switching frequency and period | • Switching frequency – f_{SW}
| | • Switching period – T
| | $T = \frac{1}{f_{SW}}$ |
Buck, boost and buck-boost derived topologies

<table>
<thead>
<tr>
<th>Topologies</th>
<th>Circuit Diagram</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck, forward, push-pull, bridge</td>
<td></td>
<td>(V_{OUT} = V_{IN} \cdot D)</td>
</tr>
<tr>
<td>Boost</td>
<td></td>
<td>(V_{OUT} = V_{IN} \cdot \frac{1}{D'})</td>
</tr>
<tr>
<td>Buck-boost, SEPIC, flyback</td>
<td></td>
<td>(V_{OUT} = V_{IN} \cdot \frac{D}{D'})</td>
</tr>
</tbody>
</table>

- **Forward**
- **Two switch forward**
- **Active clamp forward**
- **Half bridge**
 \[V_{OUT} = V_{IN} \cdot D \cdot \frac{N_s}{N_p} \]
- **Push-pull**
- **Full bridge**
- **Phase-shifted full bridge**
 \[V_{OUT} = V_{IN} \cdot 2 \cdot D \cdot \frac{N_s}{N_p} \]

- **Boost topology**

On-time duty cycle: \(D \)
Off-time duty cycle: \(D' = 1 - D \)

- **Buck-boost derived topologies**
- **SEPIC**
- **Cuk**

- **Flyback**

\[V_{OUT} = V_{IN} \cdot \frac{D}{D'} \cdot \frac{N_s}{N_p} \]
Voltage-mode buck power stage

\[A_{\text{VC}} = \frac{V_{\text{IN}}}{V_{\text{RAMP}}} \]

\[\omega_o = \frac{1}{\sqrt{L \cdot C_{\text{OUT}}}} \]

\[Q_O = \frac{R_{\text{OUT}}}{\sqrt{L/C_{\text{OUT}}}} \]

\[\omega_Z = \frac{1}{R_{\text{ESR}} \cdot C_{\text{OUT}}} \]

\[\frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} = A_{\text{VC}} \cdot \frac{1 + \frac{s}{\omega_o}}{1 + \frac{s}{Q_O \cdot \omega_o} + \frac{s^2}{\omega_o^2}} \]
Current-mode buck power stage

\[R_i = A \cdot R_S \]

\[\omega_Z = \frac{1}{R_{ESR} \cdot C_{OUT}} \]

\[A_{VC} \approx \frac{R_{OUT}}{R_i} \]

\[K_m \approx \frac{V_{IN}}{V_{SLOPE}} \]

\[\omega_p \approx \frac{1}{C_{OUT} \cdot R_{OUT}} \]

\[\omega_L = \frac{K_m \cdot R_i}{L} \]

\[\hat{V}_{OUT} \approx A_{VC} \cdot \frac{1 + \frac{s}{\omega_p}}{1 + \frac{s}{\omega_L}} \]

\[\hat{V}_C \approx \frac{\omega_p}{2 \cdot \pi} \]

\[\frac{\omega_z}{2 \cdot \pi} \]

\[\frac{\omega_L}{2 \cdot \pi} \]

Texas Instruments – 2016/17 Power Supply Design Seminar
Current-mode boost power stage

\[R_i = A \cdot R_S \]
\[\omega_r = \frac{R_{OUT} \cdot D'^2}{L} \]
\[\omega_l = \frac{K_m \cdot R_i}{L} \]
\[A_{VC} \approx \frac{R_{OUT} \cdot D'}{2 \cdot R_i} \]
\[\omega_p \approx \frac{2}{C_{OUT} \cdot R_{OUT}} \]
\[K_m \approx \frac{V_{OUT}}{V_{SLOPE}} \quad \text{at } D = 0.5 \]

\[\hat{v}_{OUT} \approx A_{VC} \cdot \left\{ \frac{1}{\omega_p} + \frac{1}{\omega_l} \right\} \cdot \left\{ \frac{1}{\omega_p} - \frac{1}{\omega_l} \right\} \]
Current-mode buck-boost power stage

\[R_i = A \cdot R_s \]
\[\omega_R = \frac{R_{OUT} \cdot D^2}{L \cdot D} \]
\[\omega_L = \frac{K_m \cdot R_i}{L} \]
\[A_{VC} \approx \frac{R_{OUT} \cdot D'}{(1 + D) \cdot R_i} \]
\[\omega_Z = \frac{1}{R_{ESR} \cdot C_{OUT}} \]
\[\omega_p \approx \frac{1 + D}{C_{OUT} \cdot R_{OUT}} \]
\[K_m \approx \frac{V_{IN} + V_{OUT}}{V_{SLOPE}} \quad \text{at } D = 0.5 \]

\[\hat{v}_{OUT} \approx A_{VC} \cdot \left(\frac{1 - s}{\omega_p} \right) \cdot \left(\frac{1 + s}{\omega_L} \right) \]

\[\hat{v}_C \approx \left(\frac{1 - s}{\omega_p} \right) \cdot \left(\frac{1 + s}{\omega_L} \right) \]
Current-mode forward power stage

\[R_i = A \cdot R_s \]
\[\omega_z = \frac{1}{R_{ESR} \cdot C_{OUT}} \]
\[A_{VC} \approx \frac{R_{OUT} \cdot N_p}{R_i \cdot N_S} \]
\[K_m \approx \frac{V_{IN}}{V_{SLOPE}} \]
\[\omega_p \approx \frac{1}{C_{OUT} \cdot R_{OUT}} \]
\[\omega_L = \frac{K_m \cdot R_i \cdot (N_S/N_P)^2}{L} \]

\[\frac{\hat{v}_{OUT}}{\hat{v}_C} \approx A_{VC} \cdot \frac{1 + \frac{s}{\omega_z}}{\left(1 + \frac{s}{\omega_p}\right) \left(1 + \frac{s}{\omega_L}\right)} \]
Current-mode flyback power stage

\[R_i = A \cdot R_s \]
\[A_{VC} \approx \frac{R_{OUT} \cdot D'}{1 + D} \cdot \frac{N_p}{N_S} \]
\[\omega_p = \frac{1 + D}{C_{OUT} \cdot R_{OUT}} \]
\[\omega_z = \frac{1}{R_{ESR} \cdot C_{OUT}} \]
\[\omega_R = \frac{R_{OUT} \cdot D'^2 \cdot \left(\frac{N_p}{N_S} \right)^2}{L_p \cdot \frac{N_p}{N_S}} \]
\[K_m \approx \frac{V_{IN} + V_{OUT} \cdot \frac{N_p}{N_S}}{V_{SLOPE}} \]
\[\omega_L = K_m \cdot R_i \frac{1}{L_p} \]

at \(D = 0.5 \)

\[\hat{v}_{OUT} \approx A_{VC} \cdot \frac{1 - \frac{s}{\omega_R}}{1 + \frac{s}{\omega_p}} \cdot \frac{1 + \frac{s}{\omega_L}}{1 + \frac{s}{\omega_z}} \]
Type I error amplifier

\[\omega_{EA} = \frac{1}{R_{FBT} \cdot C_{COMP}} \]

\[\hat{v}_C \approx \frac{\omega_{EA}}{s} \hat{v}_{OUT} \]
Type II error amplifier

\[A_{VM} \approx \frac{R_{COMP}}{R_{FBT}} \]
\[\omega_{ZEA} = \frac{1}{R_{COMP} \cdot C_{COMP}} \]
\[\omega_{HF} \approx \frac{1}{R_{COMP} \cdot C_{HF}} \]

Assumption: \(C_{COMP} \gg C_{HF} \)

\[\hat{V}_C \approx -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}} \approx -\frac{A_{VM} \cdot \omega_{ZEA}}{s} \cdot \frac{1 + \frac{s}{\omega_{ZEA}}}{1 + \frac{s}{\omega_{HF}}} \]

Diagram showing frequency response with magnitude and phase plots.
Type II transconductance amplifier

\[
A_{VM} = K_F \cdot g_m \cdot R_{COMP}
\]

\[
\omega_{ZEA} = \frac{1}{R_{COMP} \cdot C_{COMP}}
\]

\[
K_F = \frac{R_{FB}}{R_{FB} + R_{FB}}
\]

\[
\omega_{HF} \approx \frac{1}{R_{COMP} \cdot C_{HF}}
\]

\[
A_{OK} = g_m \cdot R_{EA}
\]

Assumptions: \(C_{COMP} \gg C_{HF} \) & \(R_{EA} \gg R_{COMP} \)

\[
\frac{\hat{V}_C}{V_{OUT}} = -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}}
\]

\[
\approx A_{VM} \cdot \omega_{ZEA} \cdot \frac{1 + \frac{s}{\omega_{ZEA}}}{s} \cdot \frac{1 + \frac{s}{\omega_{HF}}}{1 + \frac{s}{\omega_{HF}}}
\]
Type III error amplifier

\[A_{VM} \approx \frac{R_{COMP}}{R_{FBT}} \]

\[\omega_{ZEA} = \frac{1}{R_{COMP} \cdot C_{COMP}} \]

\[\omega_{FZ} \approx \frac{1}{R_{FBT} \cdot C_{FF}} \]

\[\omega_{FP} = \frac{1}{R_{FF} \cdot C_{FF}} \]

\[\omega_{HF} \approx \frac{1}{R_{COMP} \cdot C_{HF}} \]

Assumptions: \(C_{COMP} \gg C_{HF} \) & \(R_{FBT} \gg R_{FF} \)

\[
\frac{\dot{v}_c}{\dot{v}_{OUT}} = -A_{VM} \left(\frac{1 + \frac{s}{\omega_{ZEA}}}{1 + \frac{s}{\omega_{FP}}} \right) \left(\frac{1 + \frac{s}{\omega_{FZ}}}{1 + \frac{s}{\omega_{HF}}} \right)
\]

\[
= -A_{VM} \cdot \omega_{ZEA} \left(\frac{1 + \frac{s}{\omega_{ZEA}}}{1 + \frac{s}{\omega_{FP}}} \right) \left(\frac{1 + \frac{s}{\omega_{FZ}}}{1 + \frac{s}{\omega_{HF}}} \right)
\]
Isolated feedback with optocoupler

\[A_{VM} = CTR \cdot \frac{R_p}{R_d} \]

\[CTR = \frac{I_C}{I_f} \]

\[\omega_{ZEA} = \frac{1}{R_{FBT} \cdot C_{COMP}} \]

\[\omega_{HF} = \frac{1}{R_p \cdot C_p} \]

\[\frac{\dot{v}_c}{v'_{OUT}} \approx -A_{VM} \cdot \frac{s + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}} \approx -A_{VM} \cdot \omega_{ZEA} \cdot \frac{s}{1 + \frac{s}{\omega_{HF}}} \]
Voltage-mode buck

Modulator

\[D = \frac{V_{OUT}}{V_{IN}} \]

\[D' = \frac{V_{IN} - V_{OUT}}{V_{IN}} \]

Output filter

Error amplifier

\[V_{IN} \]

\[V_{RAMP} \]

PWM

\[V_C \]

\[V_{REF} \]

\[V_{FB} \]

\[V_{VD} \]

\[V_{OUT} \]

\[R_{ESR} \]

\[L \]

\[C_{OUT} \]

\[R_{OUT} \]

\[C_{HF} \]

\[C_{COMP} \]

\[R_{COMP} \]

\[C_{FF} \]

\[R_{FF} \]

\[R_{FBT} \]

\[R_{FBB} \]
Voltage-mode buck compensation strategy

- Choose a value for R_{FBT} based on bias current and power dissipation
- Pick target bandwidth, typically $f_{SW}/10$:
 \[\omega_C = 2 \cdot \pi \cdot f_C \]
- Find the mid-band gain A_{VM} to achieve target bandwidth
- Set ω_{ZEA} and ω_{FZ} equal to the output filter complex conjugate pole ω_O:
 \[\omega_{ZEA} = \omega_{FZ} = \omega_O \]
- Set ω_{FP} equal to the output filter zero ω_Z:
 \[\omega_{FP} = \omega_Z \]
- Set ω_{HF} equal to half the switching frequency:
 \[\omega_{HF} = 2 \cdot \pi \cdot f_{SW}/2 \]

<table>
<thead>
<tr>
<th>A_{VM}</th>
<th>$\frac{\omega_C}{A_{VC} \cdot \omega_O}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{COMP}</td>
<td>$A_{VM} \cdot R_{FBT}$</td>
</tr>
<tr>
<td>C_{COMP}</td>
<td>$\frac{1}{\omega_{ZEA} \cdot R_{COMP}}$</td>
</tr>
<tr>
<td>C_{FF}</td>
<td>$\frac{1}{\omega_{FZ} \cdot R_{FBT}}$</td>
</tr>
<tr>
<td>R_{FF}</td>
<td>$\frac{1}{\omega_{FP} \cdot C_{FF}}$</td>
</tr>
<tr>
<td>C_{HF}</td>
<td>$\frac{1}{\omega_{HF} \cdot R_{COMP}}$</td>
</tr>
</tbody>
</table>
Voltage-mode buck compensation results

Power stage

\[
\frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \approx A_{VC} \cdot \frac{1 + \frac{s}{\omega_Z}}{1 + \frac{s}{Q_o \cdot \omega_o} + \frac{s^2}{\omega_o^2}}
\]

Error amplifier

\[
\frac{\hat{v}_C}{\hat{v}_{\text{OUT}}^\prime} = -A_{VM} \cdot \left(1 + \frac{\omega_{ZEA}}{s}\right) \cdot \left(1 + \frac{s}{\omega_{FZ}}\right) \cdot \left(1 + \frac{s}{\omega_{HP}}\right) \cdot \left(1 + \frac{s}{\omega_{HF}}\right)
\]

Control loop

\[
\frac{\hat{v}_{\text{OUT}}^\prime}{\hat{v}_{\text{OUT}}} = \frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \cdot \frac{\hat{v}_C}{\hat{v}_{\text{OUT}}}
\]
Isolated current-mode flyback

Modulator

\[D = \frac{V_{\text{OUT}}}{V_{\text{IN}}} \cdot \frac{N_S}{N_P} + V_{\text{OUT}} \]

\[D' = \frac{V_{\text{IN}}}{V_{\text{IN}} + V_{\text{OUT}}} \cdot \frac{N_P}{N_S} \]

Peak current-mode flyback

Optimal \(V_{\text{SLOPE}} = V_{\text{OUT}} \cdot R_i \cdot T/L_P \cdot N_P/N_S \)

Output filter

Error amplifier

Texas Instruments – 2016/17 Power Supply Design Seminar
Current-mode flyback compensation strategy

- Choose a value for R_{FBT} based on bias current and power dissipation
- Find the modulator transconductance in A/V
- Find the RHPZ frequency at minimum input voltage and maximum load current
- Set the target bandwidth to 1/4 of the RHPZ frequency:
 \[\omega_C = 2\pi f_C = \omega_R/4 \]
- Find the mid-band gain A_{VM} to achieve target bandwidth
 - Adjust R_D, R_P and C_{OUT} as required
- Set ω_{ZEA} equal to 1/10 the target crossover frequency:
 \[\omega_{ZEA} = \omega_C/10 \]
- Set ω_{HF} equal to the lower of the RHP or ESR zero frequency:
 \[\omega_{HF} = \omega_R \text{ or } \omega_Z \]

$$G_m \text{ (mod)} = \frac{D'}{R_i} \cdot \frac{N_P}{N_S}$$

$$\omega_R = \frac{R_{OUT} \cdot D^2}{L_p \cdot D} \left(\frac{N_P}{N_S} \right)^2$$

$$A_{VM} = \frac{\omega_C \cdot C_{OUT}}{G_m \text{ (mod)}}$$

$$R_D = CTR \cdot \frac{R_P}{A_{VM}}$$

$$C_{COMP} = \frac{1}{R_{FBT} \cdot \omega_{ZEA}}$$

$$C_P = \frac{1}{R_P \cdot \omega_{HF}}$$
Current-mode flyback compensation results

Power stage
\[
\hat{v}_{\text{OUT}} \approx A_{\text{VC}} \cdot \left(1 - \frac{s}{\omega_R} + \frac{s}{\omega_L}\right) \cdot \left(1 + \frac{s}{\omega_p} + \frac{s}{\omega_m}\right)
\]

Error amplifier
\[
\frac{\hat{v}_c}{\hat{v}_{\text{OUT}}} \approx -A_{\text{VM}} \cdot \frac{1 + \omega_{ZEA}}{s} \cdot \frac{s}{1 + \frac{s}{\omega_{HF}}}
\]

Control loop
\[
\frac{\hat{v}_{\text{OUT}}'}{\hat{v}_{\text{OUT}}} = \frac{\hat{v}_{\text{OUT}}}{\hat{v}_c} \cdot \frac{\hat{v}_c}{\hat{v}_{\text{OUT}}}
\]
Bandwidth vs. transient response

With no ESR, slew rate or duty cycle limiting:

Current-mode single pole approximation:

\[V_P = \frac{\Delta I}{2 \cdot \pi \cdot f_C \cdot C_{OUT}} \]

Current-mode critically damped:

\[V_P = \frac{\Delta I}{e \cdot \pi \cdot f_C \cdot C_{OUT}} \]

Voltage-mode:

\[V_P = \frac{\Delta I}{8 \cdot f_C \cdot C_{OUT}} \]

\[t_P = \frac{1}{4 \cdot f_C} \]

\[t_P = \frac{1}{4 \cdot 10kHz} = 25\mu s \]

\[V_P = \frac{5A}{2 \cdot \pi \cdot 10kHz \cdot 440\mu F} = 180mV \]

\[V_P = \frac{5A}{e \cdot \pi \cdot 10kHz \cdot 440\mu F} = 130mV \text{ shown above} \]

\[V_P = \frac{5A}{8 \cdot 10kHz \cdot 440\mu F} = 140mV \]
Switching regulator with poor compensation

- Power stage: phase at −180° indicates high internal slope compensation
- Error amplifier: zero appears high and mid-band gain is 3 dB
- Control loop: f_c is 95 kHz with only 20° phase margin
Switching regulator with revised compensation

- Power stage: cannot change slope compensation
- Error amplifier: decrease R_{COMP} and rescale C_{COMP}
- Control loop: now f_C is 30 kHz with 67° phase margin

Texas Instruments – 2016/17 Power Supply Design Seminar
Practical limitations

- Error amp BW can limit maximum f_C
- Wider BW op amp needed for voltage-mode due to Type III compensation
- Resistance seen by output transistor forms a pole in kHz range
- More of an issue for forward topologies at higher f_C
- Maximum f_C is a fraction of f_{SW}
- Rule of thumb is 1/5 to 1/10 of f_{SW}
DCM vs. CCM characteristics

- Discontinuous conduction-mode (DCM) occurs when the inductor current dwells at zero before the end of the switching cycle.
- This causes a reduction in the bandwidth.
- Generally, if the loop is stable in CCM, it will be stable in DCM.

DCM duty cycle

- Buck
\[D = \sqrt{2 \cdot L \cdot f_{SW} \cdot I_{OUT} \cdot V_{OUT}} \]
\[V_{IN} \cdot (V_{IN} - V_{OUT}) \]

- Boost
\[D = \sqrt{2 \cdot L \cdot f_{SW} \cdot I_{OUT} \cdot (V_{OUT} - V_{IN})} \]
\[V_{IN} \]

- Buck-boost
\[D = \sqrt{2 \cdot L \cdot f_{SW} \cdot I_{OUT} \cdot V_{OUT}} \]
\[V_{IN} \]
Filter considerations

For stability: Filter $Z_{OUT} << $ Converter Z_{IN}

- Characteristic impedance $Z_s = \sqrt{\frac{L_{IN}}{C_{IN}}}$
- Damping factor $\zeta = \frac{1}{2} \left(\frac{R_L + R_C}{Z_s} + \frac{Z_s}{Z_{IN}} \right)$

- Capacitors: make C_{OUT1} smaller than C_{OUT2}
- Inductors: make L_2 smaller than L_1
- Resonance: make second stage filter resonance 3 times f_C
- Damping: make second stage filter damped to a Q of 1
Summary

• Identify poles and zeros of the power stage
• Cancel with zeros and poles in the error amp
• Adjust the gain for best performance
Resources and references

- “Closing the Feedback Loop” by Lloyd Dixon, SEM300
- “Current-Mode Control of Switching Power Supplies” by Lloyd Dixon, SEM400
- “The Right-Half-Plane Zero -- A Simplified Explanation” by Lloyd Dixon, SEM500
- “Isolating the Control Loop” by Robert Mammano, SEM700
- “Control Loop Design” by Lloyd Dixon, SEM800
- “Control Loop Cookbook” by Lloyd Dixon, SEM1100
- “A More Accurate Current-Mode Control Model” by Ray Ridley, SEM1300
- “Designing Stable Control Loops” by Dan Mitchell and Bob Mammano, SEM1400
- “Understanding and Applying Current-Mode Control Theory” by Robert Sheehan, SNVA555
- “Frequency Compensation and Power Stage Design for Buck Converters to Meet Load Transient Specifications” by S. Bag, R. Sheehan, et al., APEC 2014
Appendix

• Current-mode buck compensation
• Current-mode boost compensation
• Current-mode buck-boost compensation
• Isolated compensation techniques
• Isolated forward converter compensation
Current-mode buck

Modulator

\[D = \frac{V_{OUT}}{V_{IN}} \]

\[D' = \frac{V_{IN} - V_{OUT}}{V_{IN}} \]

Peak current-mode buck
Optimal \(V_{SLOPE} = V_{OUT} \cdot R_i \cdot T/L \)

Output filter

Error amplifier

Texas Instruments – 2016/17 Power Supply Design Seminar
Current-mode buck compensation strategy

- Choose a value for R_{FBT} based on bias current and power dissipation
- Find the modulator transconductance in A/V
- Pick target bandwidth, typically $f_{SW}/10$:
 \[\omega_c = 2 \cdot \pi \cdot f_c \]
- Find the mid-band gain A_{VM} to achieve target bandwidth
- Set ω_{ZEA} equal to 1/10 the target crossover frequency:
 \[\omega_{ZEA} = \omega_c / 10 \]
- Set ω_{HF} equal to the ESR zero frequency:
 \[\omega_{HF} = \omega_Z \]

\[
G_m (\text{mod}) = \frac{1}{R_i}
\]

\[
A_{VM} = \frac{\omega_c \cdot C_{OUT}}{G_m (\text{mod})}
\]

\[
R_{COMP} = A_{VM} \cdot R_{FBT} \quad \text{(op amp)}
\]

\[
R_{COMP} = \frac{A_{VM}}{g_m \cdot K_{FB}} \quad \text{(g_m amp)}
\]

\[
C_{COMP} = \frac{1}{\omega_{ZEA} \cdot R_{COMP}}
\]

\[
C_{HF} = \frac{1}{\omega_{HF} \cdot R_{COMP}}
\]
Current-mode buck compensation results

Power stage
\[\frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \approx A_{VC} \cdot \frac{1 + \frac{s}{\omega_p}}{1 + \frac{s}{\omega_Z}} \cdot \frac{1 + \frac{s}{\omega_p}}{1 + \frac{s}{\omega_L}} \]

Error amplifier
\[\frac{\hat{v}_C}{\hat{v}_{\text{OUT}}'} \approx -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}} \]

Control loop
\[\frac{\hat{v}_{\text{OUT}}'}{\hat{v}_{\text{OUT}}} = \frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \cdot \frac{\hat{v}_C}{\hat{v}_{\text{OUT}}'} \]
Current-mode boost

Modulator

\[D = \frac{V_{OUT} - V_{IN}}{V_{OUT}} \]
\[D' = \frac{V_{IN}}{V_{OUT}} \]

Peak current-mode boost
Optimal \(V_{SLOPE} = (V_{OUT} - V_{IN}) \cdot R_i \cdot T/L \)

Output filter

Error amplifier

\[V_{IN} \]
\[L \]
\[C_{IN} \]
\[\text{Logic} \]
\[\Sigma \]
\[\text{PWM} \]
\[V_{SLOPE} \]
\[V_{C} \]
\[C_{HF} \]
\[R_{COMP} \]
\[C_{COMP} \]
\[V_{FB} \]
\[R_{FBT} \]
\[R_{FBB} \]
\[V_{OUT} \]
\[C_{OUT} \]
\[R_{ESR} \]
\[R_{OUT} \]
Current-mode boost compensation strategy

- Choose a value for R_{FBT} based on bias current and power dissipation
- Find the modulator transconductance in A/V
- Find the RHPZ frequency at minimum input voltage and maximum load current
- Set the target bandwidth to 1/4 of the RHPZ frequency:
 \[\omega_C = 2 \cdot \pi \cdot f_C = \omega_R / 4 \]
- Find the mid-band gain A_{VM} to achieve target bandwidth
- Set ω_{ZEA} equal to 1/10 the target crossover frequency:
 \[\omega_{ZEA} = \omega_C / 10 \]
- Set ω_{HF} equal to the lower of the RHP or ESR zero frequency:
 \[\omega_{HF} = \omega_R \text{ or } \omega_Z \]

\[
G_m (\text{mod}) = \frac{D'}{R_i} \\
\omega_R = \frac{R_{OUT} \cdot D'^2}{L} \\
A_{VM} = \frac{\omega_C \cdot C_{OUT}}{G_m (\text{mod})} \\
R_{COMP} = A_{VM} \cdot R_{FBT} \quad \text{(op amp)} \\
R_{COMP} = \frac{A_{VM}}{g_m \cdot K_{FB}} \quad \text{(g}_m \text{ amp)} \\
C_{COMP} = \frac{1}{\omega_{ZEA} \cdot R_{COMP}} \\
C_{HF} = \frac{1}{\omega_{HF} \cdot R_{COMP}}
\]
Current-mode boost compensation results

Power stage
\[
\frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \approx A_{V_C} \left(\frac{1}{2\pi} \frac{s}{\omega_2} \right) \left(1 + \frac{s}{\omega_3}
ight) \left(1 + \frac{s}{\omega_p} \right) \left(1 + \frac{s}{\omega_L}\right)
\]

Error amplifier
\[
\frac{\hat{v}_C}{\hat{v}_{\text{OUT}}} \approx -A_{V_M} \cdot \frac{1}{s} \left(1 + \frac{s}{2\pi \omega_{\text{ZEA}}} \right)
\]

Control loop
\[
\frac{\hat{v}_{\text{OUT}}}{\hat{v}'_{\text{OUT}}} = \frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \frac{\hat{v}_C}{\hat{v}'_{\text{OUT}}}
\]
Current-mode buck-boost

\[
D = \frac{V_{OUT}}{V_{IN} + V_{OUT}}
\]

\[
D' = \frac{V_{IN}}{V_{IN} + V_{OUT}}
\]

Peak current-mode buck-boost

Optimal \(V_{SLOPE} = V_{OUT} \cdot Ri \cdot T/L \)

Output filter

Error amplifier
Current-mode buck-boost compensation strategy

- Choose a value for R_{FBT} based on bias current and power dissipation
- Find the modulator transconductance in A/V
- Find the RHPZ frequency at minimum input voltage and maximum load current
- Set the target bandwidth to $1/4$ of the RHPZ frequency:
 \[\omega_C = 2\pi f_C = \frac{\omega_R}{4} \]
- Find the mid-band gain A_{VM} to achieve target bandwidth
- Set ω_{ZEA} equal to $1/10$ the target crossover frequency:
 \[\omega_{ZEA} = \frac{\omega_C}{10} \]
- Set ω_{HF} equal to the lower of the RHP or ESR zero frequency:
 \[\omega_{HF} = \omega_R \text{ or } \omega_Z \]

\[
G_m (\text{mod}) = \frac{D'}{R_i}
\]
\[
\omega_R = \frac{R_{OUT} \cdot D'^2}{L \cdot D}
\]
\[
A_{VM} = \frac{\omega_c \cdot C_{OUT}}{G_m (\text{mod})}
\]
\[
R_{COMP} = A_{VM} \cdot R_{FBT} \quad \text{(op amp)}
\]
\[
R_{COMP} = \frac{A_{VM}}{g_m \cdot K_{FB}} \quad \text{(gm amp)}
\]
\[
C_{COMP} = \frac{1}{\omega_{ZEA} \cdot R_{COMP}}
\]
\[
C_{HF} = \frac{1}{\omega_{HF} \cdot R_{COMP}}
\]
Current-mode buck-boost compensation results

Power stage

\[
\frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \approx A_{\text{VC}} \left(\frac{1 - s}{\omega_R} \right) \left(\frac{1 + s}{\omega_L} \right) \left(\frac{1}{1 + \frac{s}{\omega_p}} \right) \]

Error amplifier

\[
\frac{\hat{v}_C'}{\hat{v}_{\text{OUT}}} \approx -A_{\text{VM}} \cdot \frac{1 + \frac{s}{\omega_{\text{ZEA}}}}{\frac{s}{\omega_{\text{HF}}}}
\]

Control loop

\[
\frac{\hat{v}_{\text{OUT}}'}{\hat{v}_{\text{OUT}}} = \frac{\hat{v}_{\text{OUT}}}{\hat{v}_C} \cdot \frac{\hat{v}_C'}{\hat{v}_{\text{OUT}}}
\]
Isolated compensation techniques

Simplest method: Optocoupler with shunt regulator

- **CTR** – Current transfer ratio
 \[CTR = \frac{I_C}{I_F} \]
- **C_P** – Includes opto parasitic capacitance. This creates a pole with gain setting resistor \(R_P \)

- **R_D** – Connected to \(V_{OUT} \) creates a feedback path even when \(C_{COMP} \) rolls off the gain

- **TL431** – Cathode cannot pull lower than the reference voltage

\[
\frac{\dot{v}_C}{\dot{v}_{OUT}} \approx -CTR \cdot \frac{R_P}{R_D} \cdot \frac{1}{1 + s \cdot \frac{C_{COMP} \cdot R_{FBT}}{1 + s \cdot C_P \cdot R_P}}
\]
Primary side compensation

- Uses primary side inverting amplifier to implement frequency compensation
- Opto emitter is at virtual ground of V_{REF}
 - This minimizes pole due to opto parasitic capacitance

Texas Instruments – 2016/17 Power Supply Design Seminar
Secondary side compensation

ESR zero compensation
- An RC pole to the opto can be used to cancel the output capacitor ESR zero

Phase boost
- Feed-forward across R_D adds phase boost for increased bandwidth

Zener bias
- Zener bias for R_D eliminates the high frequency feedback path for secondary-side compensation
Isolated current-mode forward

Modulator

\[D = \frac{V_{OUT}}{V_{IN}} \cdot \frac{N_P}{N_S} \]

\[D' = \frac{V_{IN} - V_{OUT} \cdot \frac{N_P}{N_S}}{V_{IN}} \]

Peak current-mode forward

Optimal \(V_{SLOPE} = V_{OUT} \cdot R_i \cdot T/L \cdot N_S/N_P \)
Current-mode forward compensation strategy

- Choose a value for R_{FBT} based on bias current and power dissipation
- Find the modulator transconductance in A/V
- Pick target bandwidth, typically $f_{SW}/10$:
 $$\omega_C = 2\pi f_C$$
- Find the mid-band gain A_{VM} to achieve target bandwidth
 Adjust R_D, R_P and C_{OUT} as required
- Set ω_{ZEA} equal to 1/10 the target crossover frequency:
 $$\omega_{ZEA} = \omega_C / 10$$
- Set ω_{HF} equal to the ESR zero frequency:
 $$\omega_{HF} = \omega_Z$$

\[
G_m (\text{mod}) = \frac{1}{R_i} \cdot \frac{N_P}{N_S}
\]

\[
A_{VM} = \frac{\omega_C \cdot C_{OUT}}{G_m (\text{mod})}
\]

\[
R_D = CTR \cdot \frac{R_P}{A_{VM}}
\]

\[
C_{COMP} = \frac{1}{R_{FBT} \cdot \omega_{ZEA}}
\]

\[
C_S = \frac{1}{R_S \cdot \omega_{HF}}
\]
Current-mode forward compensation results

Power stage
\[\frac{\hat{v}_{\text{OUT}}}{\hat{v}_{\text{C}}} \approx A_{\text{VC}} \cdot \frac{1 + \frac{s}{\omega_{p}}}{\left(1 + \frac{s}{\omega_{p}}\right)\left(1 + \frac{s}{\omega_{s}}\right)} \]

Error amplifier
\[\frac{\hat{v}_{\text{C}}}{\hat{v}_{\text{OUT}}}' \approx -A_{\text{VM}} \cdot \frac{1 + \frac{\omega_{\text{ZE}}}{s}}{1 + \frac{s}{\omega_{\text{HF}}}} \]

Control loop
\[\frac{\hat{v}_{\text{OUT}}'}{\hat{v}_{\text{OUT}}} = \frac{\hat{v}_{\text{OUT}}}{\hat{v}_{\text{C}}} \cdot \frac{\hat{v}_{\text{C}}}{\hat{v}_{\text{OUT}}}' \]
The platform bar and E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated