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Agenda
• Introduction to SiC and GaN

• Applications and Benefits

• Driver Considerations 

• Switching Performance

• Hard and Soft Switching Examples

• Measurement and Simulation

• Conclusion
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Power electronics driving forces

Global Regulations and Industry Initiatives 
demand higher efficiency and power 
density at a lower cost

3

$$

Requirements drive markets from Silicon  
to  SiC and GaN
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Physical advantages of GaN and SiC over Si

Material Si GaN SiC Impact

Bandgap (Eg), eV 1.1 3.4 3.26 Lower leakage, higher 
operating temperature

Breakdown Field 
(Vbr), V/µm 30 300 200-

<300
Higher breakdown

voltage for the same die

Electron Mobility 
(μe), cm2/V·s 1500 1500 700 On par

Thermal 
Conductivity, 
W/cmK

1.3 >1.5 <3.8
More efficient cooling, 

higher operating 
temperature

Dielectric 
Constant, εr

11.7 9 9.7 On par

Specific Ron vs Vbreak

re
EgVbrRonspi

 



62210351.3

re
EgVbrRonspi

 



 5.72210725.8

← For Si and SiC ← For GaN

Physical properties determine power switch 
performance
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Commercial SiC transistors landscape
• Key Players: Wolfspeed, Rohm, Infineon, ST Micro, USiC, Micro Semi, 

Global Power, GE and more coming  
• Voltage and Current Ratings: 400 to 1700 V, 2.6 to 60 A
• Rdson and FoM: 25 to 1000 mΩ, 1400 to 10400 mΩ•nC
• From Yole: $200M Market in 2015, CAGR: 22%
• Texas Instruments supports SiC technology by introducing gate driver ICs 

optimized for SiC FETs, like for example UCC2753X family
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Commercial GaN transistors landscape
• Key Players: EPC, GaN Systems, Transphorm, Panasonic, Navitas and 

more coming  
• Voltage and Current Ratings: 30 to 650 V, 15 to 90 A
• Rdson and FoM: 1 to 150 mΩ, 20 to 990 mΩ•nC
• From Yole: $10M Market in 2015, CAGR: 95%
• Texas Instruments entered GaN market by introducing highly integrated 

Power Stage products: LMG3410 and LMG5200
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Application benefits: WBG versus Si

Applications Topo-
logy

Si Today WBG Tomorrow
Why?

Eff. % Pdens. 
W/inch3

Cost,
₵/W Eff. % Pdens. 

W/inch3
Cost,
₵/W

AC-DC Power Supply

PFC + 
DC/DC

92–
94.5 >40 <10 94-96 >55 <8 Bridgeless PFC,

>MHz DC/DC

Motor Drive

Inverter 93 180 5 >94 >210 3.3

Integrate motor 
and inverter, 
adjustable speed 
drive

EV, HEV Charger

PFC + 
DC/DC 93-94 >50 15 95-96 >70 10

30% power loss 
reduction, lower 
cost of cooling, 
high temperature
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Other applications that benefit from WBG devices
• Renewable Energy and Smart Grid

o Solar Inverters and Wind Turbines

• Down Hole Drilling

• Avionics and Transportation

• Envelope Tracking and Class D Audio
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WBG transistors require new drivers
• RDS(on) over Vgs plots show that optimal drive voltage differs

for various WBG transistors. Fast switching might require negative bias.  

Si, GaN Cascode
optimal drive: 12 V

SiC optimal drive: 20 V
Negative turn OFF: -5 V

GaN optimal drive: 5 V
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Total gate charge comparison

Si,SuperJ, 650V, 67mΩ
138nC@10V

SiC, 900V, 65mΩ: 
30 nC @ 15 V

GaN, 650V, 55mΩ: 
5.8 nC & 6 V
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Example: +4A/-8A rated driver 
performance  with no parasitics: 

Assume: Cgs = 1nF, Vdd = 8V, then: trise = 2ns, tfall = 1ns 

∗  

∗  

Is it possible?

Datasheet drive current Ratings Neglect Parasitics
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Drive current including parasitic inductances

Drive circuit No Ind. With Ind.
I sink peak 8 A 4.6 A
tfall 1 ns 4.5 ns
Vgs undershoot 0 V -3V
Vgs overshoot 0 V 1 V

 Driving WBG FETs has to be fast and 
clean
 No large undershoot and overshoot 
allowed

Vgs voltage

Ig current

Time, ns

V

A
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High dv/dt issue
• WBG FETs can generate dv/dt transients exceeding 100 V/ns
• High slew rate dv/dt generates Miller turn-on spike at gate
• Split output driver with low RSINK minimizes Miller turn-on spike
• Split drive voltage with negative turn-off bias also helps, but drive losses increase. 

CGS

CGD
COSS

RG

RSINK

I(CGD)

VDS
Vin

IG
I(CGS)

ON

Vin

OFF
VGS Of 
SR MOSFET

VDS Of 
SR MOSFET

FET: SiC
C3M0900280D
800-V Vds rise
with 40V/ns
slew rate.

15V turn ON,
-3V turn OFF split 
rail to mitigate 4V 
Miller Spike
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Implementation

Driver and xfrmr Digital Isolator and 
High Voltage Driver Isolated Driver

Prop. Delay, ns 100 to 150 100 to 250 20 to 50
Area ratio 8:1 2:1 1
Height ratio 10:1 1 1
dV/dt immune Medium Poor Good
Bandwidth 20kHz to 500kHz DC to 1MHz DC to 5MHz
Summary Does not fit WBG Partially fits WBG Best option for WBG

Driver isolation options
• Driver isolation provides safety, level shift and noise immunity
• Related insulation can be rated Functional, Basic and Reinforced 

+
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Biasing techniques for WBG FETs: 
Limitations of Bootstrap Approach:
• Diode must have low Qrr
• SiC or GaN diode could be used
• Bias voltage is not precise 
• Regular Cboot recharge is needed
• Mostly limited to two-level topologies
• Limited dV/dt and bus voltage <600V

Biasing using isolated converters:
• Always available
• Can be used with any topology
• Stable, accurate bias voltage
• High dV/dt immunity provided by low Cis

Driver board with 
signal and bias isolation
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Layout and drive rules

Highest noise power 
switch current

Signal 
current

Drive 
current 

• Locate driver next to the FET
• Separate noisy grounds as shown 
• Locate decoupling capacitor close to VDD and GND
• Use split output drivers to optimize turn ON/OFF
• Use split rail to mitigate Miller turn ON
• Select components with low parasitics
• Minimize high di/dt loops
• Minimize high dv/dt areas
• Use wide traces whenever possible
• Use simulators to extract parasitics
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Hard and soft switching FOM
General FOM:        
Hard	Switching: 							
Soft	Switching: 									

• FOMs do not account for MOSFET rated voltage dependence
• For the same power, if V ↑, then I ↓. This allows higher RDSON ↑
• Impact of Qg, Qgs2, Qgd depends on drive voltage
• Impact of Qoss depends on operating voltage
• Qrr depends on power and remains the same
• k = 0.1 to 0.2, accounts for current increase to achieve soft switching

30
12

2 2 12 12 30

↓
Qgs2

↓
Qgd
↓

Qg

Use of RDSON and Q normalized to Vds = 30V and Vgs = 12V allows fair 
comparison of different technologies in multilevel topologies 
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Small signal Coss not relevant for switching losses
• Data Sheet based Coss is measured at 1MHz  and <0.5V AC
• Small signal Coss cannot be used for switching losses evaluation
• Large signal Cson is determined by test setup shown here
• Based on this Cson switching losses model is derived

pF
VVds

VVCossVdsCoss 40
5

25
2.2

)25()(
2












4
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)(2)(
Vs

VdsEsonVdsCson 
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Large signal Cson measurements instead of Coss
• Isolated IC driver UCC21520 and battery bias is used to minimize parasitic capacitances 
• Waveforms show 800V input switching

Charge current: 400mA/div Phase node: 200V/div  Time scale: 20ns/div

Upper Vgate: 5V/div
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GaN vs Si FET large signal Cson comparison
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Si: SPP11N60CFD:
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Averaged loss per single FET and single switching 
event. Multiply by 4 for full half-bridge loss.



Texas Instruments – 2016/17 Power Supply Design Seminar 5-21

SiC vs Si FET large signal Cson comparison
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Si: IPW90R340C3:
900V, 0.34Ω (red line)

SiC: C3M0280090D:
900V, 0.28Ω (blue line)
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Averaged loss per single FET and single switching event. 
Multiply by 4 for full half-bridge loss.
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Closer look at nonlinear Coss charge and discharge
Half-Bridge Stage as part of many topologies

QHS

QLS ic

Coss(v(t))id

Vs

Coss(v(t))

Vg-s QHS

Vg-s QLS

1st half-cycle: 
HS - ON, LS - OFF

2nd half-cycle: 
HS - OFF, LS - ON

Equivalent circuits

Charge and discharge loss of nonlinear capacitances are independent on current 
waveforms but determined by total charge through FET channel at specified Vs

2 ∙ ∙ /2 /2
/

/2
/

pRav: Average turn ON 
loss for half-bridge

Q(T/2): Total charge 
through FET channel

ic(t), id(t): Arbitrary charge and 
discharge currents
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Coss related loss based on spec: SiC C3M0280090D

Coss(Vs) = 20pF@900V from spec Ed(Vs) = 9μJ@900V from spec

Digitizing Integrating Coss over v Integrating v(q) over q

Ed(Vs): Energy stored in FET output 
capacitance, usually provided in spec, is 
derived from Coss as shown below. 
During discharge, this energy dissipated 
as loss. Spec does not include data to 
estimate Coss charging related loss.  
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Area above v(q) curve and below
red line represents stored energy

Area below v(q) curve and above
x axis represents charge energy

Stored and charge energy of nonlinear Coss

Total hard switching losses  include discharge and 
charge losses and proportional to red rectangular area 

Stored Energy plot Ed(Vs) derived as 
area above v(q) in the left plot. This plot 
is usually provided in datasheet
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Buck Power Stage to Compare SiC vs Si FETs 

VLS: 18V
C4D02120E

C3M0280090D
vs 

IPW90R340C3

L: 930μH, 
40mΩ 

VIN: 800V

VS: 5V

UCC21520

Cin
C3M0280090D

vs 
IPW90R340C3

Cout Vout: 
400V, 800W
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Major waveforms at 100 kHz and 1 μs fixed dead time 
Phase: 200V/div (blue); IL: 0.9A/div on left, 2A/div on right (pink); Low Gate: 20V/div (green); 

Upper Gate: 20V/div (red); Time: 2μs/div

ZVS at Pout = 0 W Hard Switching at Pout = 300W
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dV/dt Slew Rate at Soft and Hard Switching Conditions

Soft Switching dV/dt = 1.5V/ns; Time: 500ns/div Hard Switching dV/dt = 40V/ns; Time: 20ns/div 

Phase: 200V/div (blue); IL: 0.9A/div on left, 2A/div on right (pink); Low Gate: 20V/div (green); 
Upper Gate: 20V/div (red)
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ZVS and Body Diode Recovery Impact on Efficiency

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
80

82

84
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100

C3M0280090D, fixed 100kHz frequency and 1us dead time
C3M0280090D, adaptive frequency and dead time to maintain ZVS

Output power, W

Ef
fic

ie
nc

y,
 8

00
V

in
, 4

00
V

ou
t: 

%

ZVS lost at fixed 
100kHz frequency
and 1μs dead time

Additional losses 
because of body 
diode recovery

Adaptive
frequency and 

dead time 
control can be 
implemented 
using digital

controllers like 
UCD3K family.
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SiC vs Si Ploss in 100-kHz, 800-V to 400-V buck converter

0 80 160 240 320 400 480 560 640 720 800
0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64
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IPW90R340C3, ZVS using adaptive Fsw and Td
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Red: SiC 900 V, 280 mΩ FET has 
much lower Coss and Body diode 
losses at hard switching

SiC (blue) and Si (pink) FETs have 
similar conduction losses at Zero-
Voltage Switching but the drive 
losses of SiC FET are much lower
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SiC vs Si drive losses in 800-V to 400-V buck converter

Black: Si FET drive loss at 100 kHz 
fixed frequency with 18-V drive rail 
during hard switching. Output 
power was limited by extreme 
losses in power stage.

SiC FET drive losses at similar 
conditions are about 25% of Si FET
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Measurement and Simulation

Half-bridge GaN Switch with integrated gate driver
LMG5200
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Advancing a GaN design may necessitate 
upgrading your bench

LMG5200 test bench

• 1GHz+ Scope + High bandwidth 
voltage (Single ended and differential) 
and current probes

• TEM – Transverse Electromagnetic Cell

• Field probes with small loop area to 
isolated high PCB field areas

• Non-inductive, non-capacitive load with 
remote sensing

• Spectrum Analyzer or Mixed Domain 
Oscilloscope
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80V, 18 mOhm, enhancement-mode GaN switch 
(eGaN) half-bridge with integrated driver

LMG5200
Functional Block Diagram

Optimized
Package and Layout
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Application Circuit: 
LMG5200 EVM – 48VDC to 1V at 8 Amps

LMG5200

DC 
Input

Output – 1V at 8A

PWM 
Input

Deadtime

From
Signal 
Generator

Layout critical placement
- Input Caps
- Ground isolating resistor
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Creating an on-time pulse  to convert 
48 V to 1 V at 8 A and 500 kHz

F28069
USB ControlStick

High Resolution Timer Block 
Programming
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Oscilloscope & probe time domain considerations

LMG5200 EVM + C2000
F28069 USB ControlStick
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Correcting for measurement error

LMG5200 switch node converting 48V to 1V at 500kHz

Root Sum Square Estimate1GHz/5GS/s scope/probe system 

Duty cycle /on-time estimates
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Modeling LMG5200 circuit behavior 
SPICE circuit simulation and correlation

• Scope probe capacitance counts
• Plane capacitance counts
• Component Parasitics count

T
VSW - Sim

Vout - Sim

Time (s)
341.59u 342.46u 343.34u 344.21u 345.09u

VSW

-9.00
8.62

26.24

43.85
61.47

Vout

950.00m
1.00

1.05

1.10
1.15

VSW - Sim

Vout - Sim

*

LMG5200 uses EPC2016, 80V, 
18mohm eGaN FETs 

Simulated and Measured Waveforms 
shifted to show correlation
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LMG5200 far-field radiated emissions 
Converting 48 V to 1 V at 10 A, efficiency = 75%

TEM Cell Measurement

T

Noise Floor

900MHz - Cell Tower

Peak = -53dBm = 54dBuV

Frequency
0.00 250.00M 500.00M 750.00M 1.00G

dB
m

-100.00

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

900MHz - Cell Tower

Noise Floor

Peak = -53dBm = 54dBuV

Open TEM Cell Setup

* Noise floor measured with board connected, but not switching
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•Broadband analysis of geometry
•passes a model to the circuit

1) Full-wave 3D Simulation

•SPICE like circuit simulation
•Transient or AC analysis.

2) Circuit Simulation

•Calculates field and currents in the 3D model
•Considers switching pattern of the circuit simulation

3) Combine Results

Full-wave 3D EM analysis PCB import and design 
workflow in CST Studio Suite
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DC (1KHz)
current

1MHz 
Current
250 MHz 
Current

PGND 
and GND 
connect 
point

LMG5200 board surface current animation 
48VIN, 1 VOUT at 8 A

O
ut

pu
t –

1V
 a

t 8
A

DC Input
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Closeup on switch area surface current at 1 MHz

GND

PGND

PGND

SW

VIN -purple 
plane layer 2  

Increased 
current 

density and 
loop area due 
to pgnd/plane 

cutouts

These vias void ground and 
create a bottleneck for high 
frequency return current 
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Visualization of input capacitor effectiveness in 
CST Studio Suite

C10=10uF

C8=0.1uF C14=1uF

Bottom side capacitor

Capacitor effectiveness 
determined by  
placement, dielectric, 
and footprint
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Summary
• Advantages of WBG devices and their impact on Power Electronics 

Applications outlined

• Optimal driving technique for WBG FETs and differences versus Si FETs 
presented

• Hard and Soft Switching performance of SiC, GaN and Si FETs 
demonstrated

• Switching loss evaluation based on very non-linear small signal Coss in 
Datasheet versus large signal Cson discussed in detail

• Measurement and Simulation technique applied to WBG devices 
thoroughly investigated
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of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
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