Power Supply Design Seminar

Under the hood of a non-inverting buck-boost DC/DC converter

Reproduced from
2016 Texas Instruments Power Supply Design Seminar SEM2200
TI Literature Number: SLUP347
© 2016, 2017 Texas Instruments Incorporated

Power Seminar topics and online power training modules are available at ti.com/psds
Under the hood of a non-inverting buck-boost DC/DC converter

Vijay Choudhary
Timothy Hegarty
David Pace
Agenda

• Buck-boost conversion
 o Buck-boost applications and approaches
 o Topology advantages and disadvantages

• 4-switch buck-boost converter
 o Basic converter operation
 o Power loss calculations
 o Converter design example
 o PCB layout case study
Who needs a buck-boost converter?

- **Fixed output / variable input:**
 - Battery input from full to minimum charge
 - Automotive cold-crank
 - AC-powered with battery back-up

- **Variable output / fixed input:**
 - GaN or Silicon power amplifier (PA)
 - Constant current LED drive
 - USB Type-C power delivery (PD)

- **Programmable output / variable input**
 - Automotive USB Type-C PD
 - Adaptive PA powered from a battery
Buck-boost applications

Industrial PCs

Application needs
- 6 V-36 V_{IN} from AC-powered supply or battery
- 12 V output, 60 W-200 W

Automotive start/stop & DVRs

Application needs
- 9 V-16 V_{IN}, 3.5 V during start
- ~12 V output, 60 W-120 W

USB power delivery

Application needs
- 12 V bus or battery, 9V–16 V_{IN}
- 5/12/20 V_{OUT}, 10 W–100 W

Industrial & battery chargers

Application needs
- 12 V or 24 V_{IN} or DC adapter
- CC/CV up to 200 W+

Texas Instruments – 2016/17 Power Supply Design Seminar
Cascaded boost + buck

Advantages
- Wide choice of buck and boost controllers
- Two simple topologies
- Low noise at both input and output
- Parallel buck stages for multiple V_{OUT} rails

Disadvantages
- Two inductors
- Two controllers
- Higher cost
- Larger solution size
- Higher losses, lower efficiency
SEPIC converter
Single-ended primary inductance converter

Advantages
• Only one switch plus diode
• Wide choice of controllers for a low-side control switch
• Low input noise

Disadvantages
• DC-blocking capacitor required
• Two inductors or coupled inductor
• Efficiency degrades at higher power
• High switch voltage, $V_{IN} + V_{OUT}$
• High switch current, $I_{IN} + I_{OUT}$
• Right half-plane zero
Zeta converter
Inverted SEPIC

Advantages
• Only one switch plus diode
• Can use low-cost PFET controller
• Low output noise

Disadvantages
• DC-blocking capacitor required
• Two inductors or coupled inductor
• Efficiency degrades at higher power
• High switch voltage, $V_{IN} + V_{OUT}$
• High switch current, $I_{IN} + I_{OUT}$
• Right half-plane zero
Flyback converter

Advantages
• One switch plus diode
• Wide choice of controllers
• Higher power with larger transformer

Disadvantages
• Requires tightly-coupled transformer
• High switch voltages ($V_{IN} + N_T V_{OUT}$)
• Efficiency degrades at high power / low V_{IN}
• High input and output noise / ripple
• High frequency ringing on SW1

Note: $N_T = \text{Transformer Turns Ratio} = \frac{N_P}{N_S}$
2-switch single inductor buck-boost converter

Advantages

• Simple design
• Single inductor
• Only buck side operates at high V_{IN}
• Lower voltage SW2 FET

Disadvantages

• Non-synchronous design limits power
• High switch current for $V_{IN} < V_{OUT}$
• Output diode power losses
• Single control loop for buck and buck-boost
4-switch single inductor buck-boost

Advantages
• Single inductor / high power density
• Operates in buck mode at high V_{IN}
• Sync rectification – no diode drops
• Lower voltage SW2 FETs (V_{OUT})

Disadvantages
• Limited choice of controllers
• Challenging PCB layout
• Single control loop for buck and boost
Buck-boost solutions

<table>
<thead>
<tr>
<th>Boost + buck</th>
<th>SEPIC & Zeta</th>
<th>Flyback ((N_T = N_P/N_S))</th>
<th>2-Sw buck-boost</th>
<th>4-Sw buck-boost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (V_{SW})</td>
<td>SW1, SW2: (V \downarrow \text{IN})</td>
<td>(V \downarrow \text{IN} + V \downarrow \text{OUT})</td>
<td>SW1: (V \downarrow \text{IN})</td>
<td>SW1: (V \downarrow \text{IN})</td>
</tr>
<tr>
<td>Max (I_{SW})</td>
<td>(I_{OUT}(VOUT/VIN))</td>
<td>(I_{IN} + I_{OUT})</td>
<td>(I_{IN}(1+NS/NP \text{VIN}/V \downarrow \text{OUT}))</td>
<td>(I_{IN} + I_{OUT})</td>
</tr>
<tr>
<td>(I_{L1})</td>
<td>(I_{OUT}(VOUT/VIN))</td>
<td>(I_{OUT}(VOUT/VIN))</td>
<td>(I_{OUT}(VOUT/VIN + NS/NP))</td>
<td>(I_{OUT}(VOUT/VIN + 1))</td>
</tr>
<tr>
<td>(I_{L2})</td>
<td>(I_{OUT})</td>
<td>(I_{OUT})</td>
<td>(I_{OUT}(1+NS/NP VOUT/V \downarrow \text{IN}))</td>
<td>–</td>
</tr>
</tbody>
</table>

Texas Instruments – 2016/17 Power Supply Design Seminar
Buck-boost DC/DC converter progression

- **2-Sw buck-boost**
 - < 25 W
 - ~90% efficiency

- **Flyback, SEPIC or Zeta**
 - < 40 W
 - ~90% efficiency

- **Sync flyback, SEPIC or Zeta**
 - < 100 W
 - ~93% efficiency

- **4-Sw buck-boost**
 - 25 W – 200 W
 - > 95% efficiency

Higher power and efficiency
4-switch buck-boost converter power stage
Current-mode control: peak boost and valley buck
Buck-boost mode transitions

- Buck FET off-time < 250 ns ⇒ transition mode
- Boost FET on-time < 250 ns ⇒ transition mode
- Timer hysteresis eliminates chatter at boundary

Texas Instruments – 2016/17 Power Supply Design Seminar
4-switch buck-boost design example

<table>
<thead>
<tr>
<th>Design parameters</th>
<th>Target specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range, $V_{IN\text{(min)}}$–$V_{IN\text{(max)}}$</td>
<td>6 V–42 V</td>
</tr>
<tr>
<td>Output voltage, V_{OUT}</td>
<td>12 V</td>
</tr>
<tr>
<td>Maximum load current, $I_{OUT\text{(max)}}$</td>
<td>6 A</td>
</tr>
<tr>
<td>Switching frequency, F_{SW}</td>
<td>300 kHz</td>
</tr>
<tr>
<td>Operating mode</td>
<td>CCM, hiccup-mode OCP</td>
</tr>
</tbody>
</table>
Inductor selection

Inductance selection is based on
1. Target peak-to-peak ripple current
2. RMS and saturation current ratings
3. Size / cost

Set ripple current ratios in deep boost operating points at 20-40%:

\[L_{\text{BOOST}} = \frac{V_{\text{IN(min)}}^2 (V_{\text{OUT}} - V_{\text{IN(min)}})}{0.2 \times I_{\text{OUT(max)}} F_{\text{sw}} V_{\text{OUT}}^2} = 4.2 \mu\text{H} \]

Inductor sat current rating:

\[I_{\text{L(SAT)}} \geq 1.5 \times \left(\frac{V_{\text{OUT}} \times I_{\text{OUT(MAX)}}}{0.9 \times V_{\text{IN(MIN)}}} + \frac{\Delta I_{\text{L}}}{2} \right) = 21.6 \text{A} \]

<table>
<thead>
<tr>
<th>VIN</th>
<th>ΔIL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 V</td>
<td>2.1 A</td>
</tr>
<tr>
<td>24 V</td>
<td>4.3 A</td>
</tr>
<tr>
<td>42 V</td>
<td>6.1 A</td>
</tr>
</tbody>
</table>

Select L1 = 4.7\mu\text{H}
C\text{OUT} selection

Maximum RMS current in C\text{OUT} occurs in boost mode

\[I_{\text{COUT}(\text{rms})} = I_{\text{OUT}} \sqrt{\frac{V_{\text{OUT}}}{V_{\text{IN}}}} - 1 = 6\, \text{A} \]

\(V_{\text{OUT}} \) ripple: related to ESR

\[\Delta V_{\text{RIPPLE(ESR)}} = I_{\text{OUT}} \frac{V_{\text{OUT}}}{V_{\text{IN(min)}}} \text{ESR} \]

ESR (5 mΩ) → 60 mV

\(V_{\text{OUT}} \) ripple: related to C\text{OUT}

\[\Delta V_{\text{RIPPLE(C\text{OUT})}} = I_{\text{OUT}} D_{\text{boost}} \frac{D_{\text{sw}}}{C_{\text{OUT}}} \]

C\text{OUT} (330μF) → 30mV

Use a combination of ceramic and bulk caps to achieve RMS current rating, ESR & C\text{OUT}

Texas Instruments – 2016/17 Power Supply Design Seminar
C\textsubscript{IN} selection

Maximum RMS current flowing in C\textsubscript{IN} occurs in buck mode

\[I_{\text{CIN(rms)}} = I_{\text{OUT}} \sqrt{D(1-D)} = 3A \]

\(I_{\text{IN}} \) ripple: related to ESR

\[\Delta V_{\text{RIPPLE(ESR)}} = I_{\text{OUT}} \cdot \text{ESR} \]

ESR (25m\(\Omega \)) \(\rightarrow \) 150mV

\(I_{\text{IN}} \) ripple: related to C\textsubscript{IN}

\[\Delta V_{\text{RIPPLE(CIN)}} = \frac{I_{\text{OUT}} D_{\text{buck}} (1 - D_{\text{buck}})}{C_{\text{IN}} F_{\text{sw}}} \]

C\textsubscript{IN} (68\(\mu \)F) \(\rightarrow \) 75mV

Texas Instruments – 2016/17 Power Supply Design Seminar
Slope capacitance, C_{SLOPE}

Peak current-mode boost

For ideal adaptive slope compensation, select

$$C_{\text{SLOPE}} = \frac{L_1}{g_{m(slope)} R_{\text{SENSE}} A_{\text{CS}}}$$

$$= 2\mu\text{s} \times \frac{4.7\mu\text{H}}{8\text{m}\Omega \times 5} = 235\text{pF}$$

Select a slope cap of 100 pF to 2x calculated above.

Lower C_{SLOPE} recommended for noise immunity.

<table>
<thead>
<tr>
<th>S_n</th>
<th>V_{in}</th>
<th>V_{out}</th>
<th>S_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{V_{\text{in}} - V_{\text{out}}}{L}$</td>
<td>S_f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{V_{\text{out}}}{L}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$C_{\text{SLOPE}} = 100 \text{pF}$
Converter small-signal model

Load pole

\[
 f_{p1(\text{boost})} = \frac{1}{2\pi} \left(\frac{2}{R_{\text{OUT}}C_{\text{OUT}}} \right) = 398\text{Hz}
\]

ESR zero

\[
 f_{z1} = \frac{1}{2\pi} \left(\frac{1}{R_{\text{ESR}}C_{\text{OUT}}} \right) = 79.6\text{kHz}
\]

RHP zero

\[
 f_{z\text{RHP}} = \frac{1}{2\pi} \left(\frac{R_{\text{OUT}} \left(1 - D_{\text{Boost(max)}} \right)^2}{L1} \right) = 16.9\text{kHz}
\]

\[
 f_{p1(\text{buck})} = \frac{1}{2\pi} \left(\frac{1}{R_{\text{OUT}}C_{\text{OUT}}} \right) = 199\text{Hz}
\]

Target crossover frequency

\[
 F_c = 4\text{kHz}
\]
Control loop compensation

\[f_{zc} = 1\text{kHz} \]

\[R_{c1} = \frac{2\pi f_c}{g_{m_{EA}}} \times \frac{R_{FB1} + R_{FB2}}{R_{FB1}} \times \frac{A_{CS} R_{SENSE} C_{OUT}}{1 - D_{\text{max}}} = 10.9\Omega \]

\[C_{c1} = \frac{1}{2\pi f_{zc} R_{c1}} = 15.9\text{nF} \]

\[C_{c2} = \frac{1}{2\pi f_{zESR} R_{c1}} = 106\text{pF} \]

\[A_{CS} = 5 \text{ (current sense gain)} \]

Also provides \(f_{sw} \) noise suppression
Control loop results

Boost-mode

Bode Plot, \(V_{\text{in}} = 6V \)

- Crossover Frequency = 2.8 kHz
- Phase Margin = 63°

Buck-mode

Bode Plot, \(V_{\text{in}} = 18V \)

- Crossover Frequency = 3.5 kHz
- Phase Margin = 71°
Reference schematic

LM5175

Texas Instruments – 2016/17 Power Supply Design Seminar
Identify high di/dt and dv/dt, noise-sensitive traces
4-switch buck-boost converter “hot” loops

Minimizing Power Loop and Gate Loop parasitic inductances is very important. Both C_{IN} and C_{OUT} must be carefully placed in the PCB layout.
Top layer power stage routing

1. Place input caps close to buck leg MOSFETs
2. Place output caps close to boost leg MOSFETs
3. Keep shunt close to FETs for tight loop layout
4. VIN and VOUT planes provide heatsinking for high-side FETs
Bottom layer power stage and controller routing

1. Connect PGND and AGND at DAP
2. Locate VCC and BOOT caps close to IC
3. Separate GND island for small-signal components
4. Current sense filter close to IC
Layer 2: Solid GND plane; Layer 3: gate drives

SW1 copper & vias (8 mil ϕ)

GND vias (15 mil ϕ)

SW2 copper & vias (8 mil ϕ)

GND vias (8 mil ϕ)

Vias for Q1 gate resistor

Q1 gate drive traces routed differentially (20 mil width)

Q1 source vias (8 mil ϕ)

Thermal vias (8 mil ϕ) under IC for heatsinking & GND plane connection

Q3 gate via (15 mil ϕ)

Q3 gate drive traces routed differentially (20 mil width)
Layers 4 & 5: Current sense and gate drives

- **Vias for Kelvin current sensing**
- **Q4 gate drive trace (20 mil width)**
- **Current sense traces routed differentially**
- **Vias for Q4 gate resistor**
- **VIN sense trace surrounded by GND copper**
- **Q2 gate drive trace (20 mil width) & gate via (15 mil Φ)**
- **Direct path to GND terminal**
- **VOUT sense trace surrounded by GND copper**
Summary

• Buck-boost applications with step-up / step down conversion appear in many end-markets.

• Several topologies to choose from for buck-boost conversion.
 o Best fit chosen based on power level, efficiency, solution size and cost goals

• Single-inductor solutions dominate when high efficiency and output power are needed
 o 4-switch buck-boost reduces rectifier losses over entire operating range
 o Transition region switching losses are reduced when controller alternates between buck mode and boost mode.

• Application design example provided a working solution for a 12 V / 72 W converter with wide 6 V to 42 V input range.

• PC board layout design begins with identification of high dv/dt nodes and high di/dt loops. Best performance is achieved when current loops are short and sensitive nodes are spaced well away from noise generating traces.
Internet

TI Semiconductor Product Information Center Home Page
support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

Americas
- **Phone** +1(512) 434-1560
- **Fax** +1(972) 927-6377
- **Internet/Email** support.ti.com/sc/pic/americas.htm

Brazil
- **Phone** 0800-891-2616

Mexico
- **Phone** 0800-670-7544
- **Fax** +1(972) 927-6377
- **Internet/Email** support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone
- **European Free Call** 00800-ASK-TEXAS (00800 275 83927)
- **International** +49 (0) 8161 80 2121
- **Russian Support** +7 (4) 95 98 10 701

Fax
- **International** +(49) (0) 8161 80 2045
- **Internet/Email** asktexas@ti.com

Japan

Phone
- **Domestic** 0120-92-3326
- **International** +81-3-3344-5317
- **Domestic** 0120-81-0036

Fax
- **International** support.ti.com/sc/pic/japan.htm
- **Domestic** www.tij.co.jp/pic

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

The platform bar and E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that TI has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which have been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio
Amplifiers
amplifier.ti.com
Data Converters
dataconverter.ti.com
DLP® Products
www.dlp.com
DSP
dsp.ti.com
Clocks and Timers
www.ti.com/clocks
Interface
interface.ti.com
Logic
logic.ti.com
Power Mgmt
power.ti.com
Microcontrollers
microcontroller.ti.com
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
www.ti.com/automotive
Communications and Telecom
www.ti.com/communications
Computers and Peripherals
www.ti.com/computers
Consumer Electronics
www.ti.com/consumer-apps
Energy and Lighting
www.ti.com/energy
Industrial
www.ti.com/industrial
Medical
www.ti.com/medical
Security
www.ti.com/security
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Video and Imaging
www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated