Design review of a 2-kW parallelable power supply module

Reproduced from
2016 Texas Instruments Power Supply Design Seminar SEM2200
TI Literature Number: SLUP349
© 2016, 2017 Texas Instruments Incorporated

Power Seminar topics and online power training modules are available at ti.com/psds
Design review of a 2 kW parallelable power supply module

Roberto Scibilia
Agenda

• Introduction

• Topology selection:
 o First stage: PFC, single phase, or interleaved?
 o Second stage: Half-bridge, resonant LLC or full-bridge phase shift?

• Module design
 o EMI filter, PFC and auxiliary power supply
 o Input AC voltage sensing
 o Full-bridge, phase-shift resonant
 o Microcontroller

• Digital parallel: using CAN bus (non-standard) to perform parallel and data interchange

• Test data on 2 kW battery charger module
Typical power module applications

- Electric forklift
- Telecom modules with redundancy
- GEL battery
- Lead-acid battery

Diagram showing the supply and charging cycles for different applications.
Power supply or battery charger?

• The module can be generic power supply or customized as battery charger

• Typical application:
 o Telecom power supply with redundancy
 o Battery chargers for forklift
 o Battery chargers for electric vehicles

• After specializing the module as battery charger, new functions are needed:
 o Hot swap for overcurrent protection
 o Reverse polarity protection
 o Charging profile implementation
Specifications

- Nominal input AC voltage: 230 VAC
- Working AC voltage: 90 VAC…265VAC
- Output voltage: 20 V…32 V @ 62.5 A
- Harmonic limits: EN61000-3-2 Class A
- Output power: 2 kW @ 230 VAC
- Input current limit: 10 A
- Minimum plug-to-plug efficiency: 90% (design to cost – better than “80 Plus Silver”)
- User interface: LCD display, 4 pushbuttons
- Modularity: Parallel with master/slave architecture
- Parallel function: Analog or digital, CAN (non-standard) communications bus
- Settable parameters: Output voltage and current levels, input AC UVLO and OVP, reverse OVP, output short, OTP, master/slave configuration (up to 1 master and 9 slaves)
Modules / chargers available today

<table>
<thead>
<tr>
<th>Model</th>
<th>Power</th>
<th>V_{IN} Range</th>
<th>Efficiency</th>
<th>Power Density</th>
<th>Cooling</th>
<th>Human Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>720 W at $T_{AMB} < 40^\circ$C</td>
<td>Universal and extended</td>
<td>>85%</td>
<td>106 W / cm³</td>
<td>Temperature controlled fan</td>
<td>Status light-emitting diode (LED)</td>
</tr>
<tr>
<td>B</td>
<td>1 kW</td>
<td>High Line (184 VAC…275VAC)</td>
<td>96% peak</td>
<td>78.7 W / cm³</td>
<td>Natural convection</td>
<td>Charging status indication (LED)</td>
</tr>
<tr>
<td>C</td>
<td>3 kW</td>
<td>High Line (184 VAC…275VAC)</td>
<td>94% peak</td>
<td>116 W / cm³</td>
<td>Forced convection</td>
<td>Charging status indication (LED)</td>
</tr>
<tr>
<td>TI prototype</td>
<td>2 kW at $T_{AMB} < 80^\circ$C</td>
<td>Universal with derating</td>
<td>> 91%</td>
<td>86.8 W / cm³</td>
<td>Variable-speed fan</td>
<td>LCD Pushbuttons</td>
</tr>
</tbody>
</table>
Block diagram

- **EM filter & rectifier**
- **PFC power stage**
- **Full-bridge, phase-shift DC/DC converter**
- **Synchr. rectifier**
- **Output filter**
- **Pre-charging thermistor**
- **Back-to-back E-switch**
- **Battery**
- **VAC input**
- **PFC-out**
- **Rsense**
- **Voltage loop**
- **Current loop**
- **Voltage ref**
- **Current ref**
- **PFC enable**
- **Microcontroller**
- **LDC display**
- **4 pushbuttons**
- **Temperature sensor**
- **Auxiliary flyback**

- **0…32 V @ 62.5 A**
PFC CCM boost: interleaved or single-phase?

Interleaving advantages
- Reduced high-frequency current ripple
- Easy EMI filtering
- Easier scalability to higher power
- Low profile possible
- More efficient thermal dissipation

Single-phase advantages
- Low overall cost solution thanks to reduced component count
- No current share problems
- Low-cost controller
DC/DC topology selection

Switch driving method

- Half-bridge \rightarrow PWM ($D = 0\ldots50\%$)
- PS FB \rightarrow $D = 50\%, 0..180^\circ$ phase-shift
- LLC \rightarrow $D = 50\%$, frequency modulated
DC/DC topology selection

Half-bridge, switch current

- $I_{SW1} = 11.4A$
- $I_{SW2} = 13A$
- $I_{INPUT} = 5.49A$
- $D = 45\%$

Full-bridge, switch current

- $I_{SW1} = 5.7A$
- $I_{SW2} = 6.5A$
- $I_{INPUT} = 5.49A$
- $D = 45\%$

Low $V_{OUT} \rightarrow$ low gain \rightarrow high F_{SW}

Texas Instruments – 2016/17 Power Supply Design Seminar
Auxiliary power supply alternatives

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Good standby power</th>
<th>Low cost</th>
<th>Opto-less</th>
<th>Overload protection</th>
<th>Good Eff.</th>
<th>Good V<sub>OUT</sub> regulation</th>
<th>Good transient response</th>
<th>EMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi-resonant w/PSR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>~</td>
<td>~</td>
<td>✓</td>
</tr>
<tr>
<td>Quasi-resonant w/optocoupler & depl. mode FET</td>
<td>✓</td>
<td>~</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Constant switching frequency + optocoupler</td>
<td>~</td>
<td>~</td>
<td>X</td>
<td>X</td>
<td>~</td>
<td>✓</td>
<td>✓</td>
<td>~</td>
</tr>
</tbody>
</table>

✓ = Yes, X = No, ~ = average performance

Chose quasi-resonant w/optocoupler for best regulation, efficiency and standby performance.
Block design: EMI filter

- Different L3 and L4 to avoid noise peaking (resonance)
- RT1 NTC is shorted by means of Relay
- Start with L4 arbitrary 1 mH; rate @ maximum input current
- Differential LC filter: leverage L4 leakage inductance (~1%)
- Main differential filter defined by C7, L4 and C12 // C11 (class X2)
- Class-Y capacitors needed for high-frequency and CM noise (C2, C3, C13, C14)
Block design: EMI filter, differential-mode

- $C_7 = 1.54 \mu F$ (use $2.2 \mu F$) by:
 - Allowing 30% inductor current ripple
 - Using 1% C_7 voltage ripple

- Greatest ripple current:
 - @ $D=50\% \rightarrow I_r = 4.58 \text{ Apk-pk}$

- Both 1 Vpk square and triangular wave → use only 3rd-harmonic to select filter
 \[
 I_{3H} = \frac{8 \cdot \left(\frac{I_{pp}}{2} \right)}{9 \cdot \pi^2} = 0.206 \text{ A}
 \]

\[
\frac{4V_r}{nT} = 1^{st} \text{ harmonic, square wave } = 122\text{dBuV}
\]
\[
\frac{8V_r}{(nT)^2} = 1^{st} \text{ harmonic, triangular wave } = 118\text{dBuV}
\]

\[
V_r = V\text{ ripple } = 1\text{Vpk}
\]
Block design: EMI filter, differential-mode (cont.)

\[V_{C7} = I_{3H} \cdot \frac{1}{2 \cdot \pi \cdot (3 \cdot F_{SW}) \cdot C7} = 38 \text{ mV} \]

- \(V_{C7} \) ripple is sinusoidal ~ 92 dBuV
- Voltage sent to receiver: \(V_{Cx} / 2 \)
- Add 3 dBuV margin

\[\text{Att} = V_{C7}(dB) - \text{Limit}(QP) + \text{Margin} = 36.6 \text{ dB} \]

\[\text{Limit}(QP) = \text{Quasi-peak CISPR22 limit @ 390 KHz} = 58 \text{ dbuV} \]

- Corner frequency \(F_c \) defined by \(L_s \) and \(C_x \):

\[F_c = 10^{\frac{-\text{Att}}{40}} \cdot F_{3H} = 47.4 \text{ KHz} \]

\[C_x = \frac{1}{8 \cdot \pi^2 \cdot L_s \cdot (F_c)^2} = 563 \text{ nF} \]

Texas Instruments – 2016/17 Power Supply Design Seminar
Block design: PFC boost

- Hard-switching and CCM:
 - SiC needed
- D1 avoids surge through SiC diode
- 2 FETs in parallel:
 - Spread the heat
 - Use cheaper components
- 4 Al-E caps benefit 100 Hz / 120 Hz ripple and transient response
Block design: inductor value

- Inductor ripple current = 30% @ D=50%
 \(V_{IN(pfc)} = V_{OUT(pfc)}/2 \)
 \[
 L_1 = \frac{V_{OUT(pfc)} \cdot (1 - D) \cdot D}{\Delta I \cdot F_{SW}} = 168 \, \mu H
 \]

- Inductor to support 16 A (peak) and 10 A (RMS)

\[
I_{SW} = K_1 \cdot \sqrt{1 - K_2 \cdot K_3} = 6.9 \, A
\]

\[
I_{D2} = K_1 \cdot \sqrt{K_2 \cdot K_3} = 8.3 \, A
\]

\[
I_c = \frac{P_{OUT(pfc)}}{V_{OUT(pfc)}} \cdot \sqrt{\frac{K_2}{K_3}} - 1 = 6.1 \, A
\]

\[
K_1 = \frac{P_{OUT(pfc)}}{\eta \cdot V_{IN(pfc, \min)}}
\]

\[
K_2 = \frac{8 \cdot \sqrt{2}}{3 \cdot \pi}
\]

\[
K_3 = \frac{V_{IN(pfc, \min)}}{V_{OUT(pfc)}}
\]
Block design: component stress analysis

- Swinging inductor improves EMI and keeps high L
- Allow 0.2% conduction losses
- FET → $R_{DS_{ON}} = 125 \text{ m}\Omega$, 650 V, $C_{OSS} = 53 \text{ pF}$
- Total FET losses → 4.14 W per FET
- SiC → $V_{TH} = 1 \text{ V}$, $Z_D = 0.05 \text{ Ohm}$

\[
R_{DS_{ON}(EQ)} = \frac{2}{1000} \frac{P_{OUT}(pf\text{c})}{\eta \cdot (I_{SW})^2} = 0.087 \Omega
\]

\[
P_{COND(EQ)} = \frac{R_{DS_{ON}(EQ)}}{2} \cdot (I_{SW})^2 = 3.02 \text{ W}
\]

\[
P_{CROSS(EQ)} = \frac{1}{2} \cdot (2 \cdot COSS) \cdot (V_{OUT}(pf\text{c}))^2 \cdot F_{SW} = 1.1 \text{ W}
\]

\[
P_{SW(EQ)} = \frac{1}{2} \cdot V_{OUT}(pf\text{c}) \cdot I_{SW} \cdot (T_R + T_F) \cdot F_{SW} = 4.16 \text{ W}
\]

\[
P(EQ) = P_{COND(EQ)} + P_{CROSS(EQ)} + P_{SW(EQ)} = 8.28 \text{ W}
\]

\[
P_{D2} = V_{TH} \cdot I_{OUT}(pf\text{c}) + Z_D \cdot (I_{D2})^2 = 8.46 \text{ W}
\]
Block design: output bulk capacitor

- Output capacitance supports both hold-up time and RMS current:

\[
C_{OUT}(pfc) = \frac{2 \cdot P_{OUT}(pfc) \cdot T_{HOLD}}{(V_{OUT}(pfc, nom))^2 - (V_{OUT}(pfc, nom) - V_{DROP})^2} = 1.08 \cdot 10^3 \mu F
\]

- Choose ~1300 uF (+ 20% due to tolerance) \(\rightarrow\) select 4 x 330 uF
- Each capacitor should support \(I_{RMS} \geq 1.53 A_{RMS}\) (6.11 A / 4)
- Also check peak-peak ripple voltage @ \(F_{LINE} = 47\) Hz:

\[
V_{RIPPLE}(pfc) = \frac{I_{OUT}(pfc)}{2 \cdot \pi \cdot 2 \cdot F_{LINE} \cdot C_{OUT}(pfc)} = 7.9 V
\]

DONE! Less than ± 2%

Texas Instruments – 2016/17 Power Supply Design Seminar
Block design: auxiliary power supply

- Nominal power consumption: $P_{\text{NOM}} = 8.5 \, \text{W} \rightarrow \text{design for 10 W}$
- Input voltage range $V_{\text{IN(AUX)}}$: $120 \, \text{V (85 Vac)} \ldots 400 \, \text{V}$
- Switching frequency range: $F_{\text{SW}} = 70 \, \text{kHz} \ldots 120 \, \text{kHz}$
- Select transformer turns ratio to keep $V_{\text{DS_MAX}} \leq 650 \, \text{V}$

Texas Instruments – 2016/17 Power Supply Design Seminar
Block design: AC voltage-sensing

V_{AC} measurement needed for:
- Input under-voltage and over-voltage protection
- Limit input current per digital calculation of $V_{OUT(fb)}$, $I_{OUT(fb)}$, η

Important: Decouple input AC current 50 Hz stray field from I_1 loop → it will affect the precision!

$V_{PK} \equiv I_{PK} \cdot R_B$

$0\ldots2\text{Vdc} \rightarrow 0\text{Vac}...300\text{Vac}$

$0V + 3V_{PK}/2$

$\eta \cdot V_{IN(pfc)} = \frac{P_{OUT(fb)}}{I_{IN(pfc)}}$
Block design: PSFB block diagram

- Back-to-back FETs block FET surge and reverse polarity
- CS Xfrm in series w/ bridge prevents x-cond.
 (Also imbalance due to circulating currents)
- Gate drive simplified by 50% D
- 0.2 mΩ shunt thanks to high-precision, low-offset op amp

0..32V DC @ 62.5A
Block design: PSFB circulating currents

$V_{\text{OUT}}(\text{PFC})$

Current loop flowing during:
$T_{\text{ON}} \rightarrow T_{\text{OFF}}$

Diagram showing the circuit layout with components labeled and the flow of current during T_{ON} and T_{OFF}. The diagram includes components such as Q_a, Q_b, Q_c, Q_d, Q_f, C_{SS}, C_{OUT}, L_{OUT}, and others.
Block design: PSFB waveforms

- $I_{Qa}(\text{RMS}) \sim I_{Qc}(\text{RMS})$
- Set $(\Delta I_{\text{Out}}) = 20\%$, @ $V_{\text{IN}}(\text{fb,nom}) = 400$ V, $V_{\text{OUT}}(\text{fb,nom}) = 27$ V

$$L_{\text{OUT}} = \frac{V_{\text{OUT}}(\text{fb,nom}) \cdot (1 - D(\text{fb,nom}))}{\Delta I_{\text{OUT}} \cdot F_{\text{SW}}} = 3.7 \, \mu\text{H}$$

- "Leading" switch Q_a
- "Lagging" switch Q_c
- Sync switch Q_e with overlap

Q_e_{RMS} switch current: $I_{S_{\text{RMS}}} = 42.7 \, \text{A}$
Block design: PSFB main FET choice

- Select loss budget = 1% of P_{OUT} on Q_A through $Q_D \rightarrow P_{Q_A} = (0.25\% \text{ of } P_{OUT}) = 4.8\text{W}$

$$P_{Qa} = (I_{Qa}(RMS))^2 \cdot RDS_{ON}(Qa) + 2 \cdot Q_G(Qa) \cdot V_{GATE} \cdot \frac{F_{SW}(fb)}{2}$$

- Selected 4 x FETs, $RDS_{ON} = 0.19\ \Omega, \ 17\text{A}, \ 650\text{V}$ ($\geq V_{IN(fb,max)}$)
- Incorporates ultra-fast body diode: no spikes at light load (when ZVS is lost)
- $N = \text{Transformer turns ratio} = 9.5, \ V_{IN(fb,max)} = 440\ \text{V}$
- Sync. rectification Q_e and Q_f must withstand $V_{DS(Qe)}$ according to:

$$V_{DS(Qe)} = \frac{2 \cdot V_{IN(fb,max)}}{N_{PS(fb)}} \cdot 1.5 = 139\ \text{V} \quad (+50\% \text{ due to spikes})$$

Neglect $Q_G(Qa)$ (gate charge loss)

$R_{DS(ON)} \leq 0.21\ \Omega$
Block design: PSFB sync. FET choice

- Select 200 V FET, since we have 139 V clamped spike
- Loss (conduction) budget = 1% of P_{OUT} on Qe and Qf → $P_{BUDGET}(Qe) = (0.5\% \text{ of } P_{OUT}) = 10 \text{ W}$
- Selected 4 x FETs, $RDS_{ON} = 10.5 \text{ m}\Omega$, 84A, 200 V
- Use 2 parallel FETs each for Qe and Qf

\[
RDS_{ON}(EQ) \leq \frac{P_{BUDGET}(Qe)}{(I_{Qe}(RMS))^2} = 5.5 \cdot 10^{-3} \Omega
\]

\[
P_{Qe} = (I_{Qe}(RMS))^2 \cdot RDS_{ON}(Qe) + \frac{P_{OUT}(fb)}{V_{OUT}(fb,\text{nom})} \cdot V_{DS}(Qe) \cdot T_F \cdot F_{SW}(fb) \cdot 2 + 2 \cdot COSS(Qe, \text{avg})
\]

\[
\cdot (V_{DS}(Qe))^2 \cdot \frac{F_{SW}(fb)}{2} + 2 \cdot Q_G(Qe) \cdot V_{GATE} \cdot F_{SW}(fb) = 25.2 \text{ W}
\]
Block design: PSFB resonant inductor

- \(E_{\text{STORE}} \) in \(L_S \) charges total \(C_{\text{OSS}} \) of one leg
- Achieve ZVS down to \(\text{Load}_{\text{MIN}} = 15\% \) of full load →

\[
L_S \geq 2 \cdot \text{COSS}(Qa, \text{avg}) \cdot \frac{(V_{IN}(fb, \text{nom}))^2}{\left[\text{LOAD}(\text{min}) \cdot \left(I_{PP} - \frac{\Delta I_{\text{OUT}}}{N_{PS}(fb)}\right)\right]^2} - L_{LK} = 1.13 \cdot 10^{-5} \text{H}
\]

- Where: \(L_{LK} = 3.5 \text{ uH} \) (0.1% of magnetizing inductance) → \(L_S = 10 \text{ } \mu\text{H} \)
- \(L_S \) RMS current and T1 primary current are the same (have only AC component)
- Select PQ20/20 platform with:
 - \(\Delta B_{PK} = 118 \text{ mT} \), 10 turns Litz wire (160x0.1 mm)
 - N97 EPCOS core, gap 0.77 mm, \(\mu_E = 57 \)
 - Results in copper losses = 0.63 W and core losses = 0.57 W
Block design: PSFB FET drive

- Select turns ratio of $T4 = 1:1$ to get $V_{DRIVE} = 12V$ (AF4779, $L_M = 0.9 \text{ mH}$)
- Add small $R_P (~2…3\Omega)$ to damp primary winding + $C_P = 1 \text{ uF}$ to remove DC comp.
- $C_{f1,2}$ hold $V_{DD} = +12 \text{ V}$ and $V_{EE} = -12 \text{ V}$ voltages during driving peaks (used 22 nF)
- $R_{d1,2}$ are needed to damp the oscillation on V_{DD} & V_{EE}
- Select damping factor ζ in a range of 0.5…1

\[\zeta := 0.5 \]

\[\zeta = 0.4 \quad \zeta = 0.6 \quad \zeta = 1 \]

\[Rd1 = 2 \cdot \zeta \cdot \frac{L_M(T4)}{Ch1} = 94.4\Omega \]

= minimum damping factor

V_{DD}

V_{EE}

Texas Instruments – 2016/17 Power Supply Design Seminar
Block design: PSFB voltage and current loop

- DAC achieved by PWM-to-average → V-REF, I-REF
- Chosen Rfilt1 = 2 * Rfilt2 and Cfilt2 = 2 * Cfilt1 → same FCO
- By selecting FCO = 16 Hz, Rfilt1 = 100 K, Cfilt1 = 100 nF
- RBIAS2 biases current loop → zero current at startup
- 2 x PWM_REF come from μC timer channels
- If PWM_REF is in three-state condition → VOUT=0, IOUT=0
Block design: Leverage a microcontroller

Master-slave architecture

Sets and reads RPM

CAN bus and digital parallel

Reads input voltage

Microcontroller

Sets V_{OUT} levels

Sets I_{OUT} and current limit

Internal temperature reading
Block design: Choice of Microcontroller

• Slow voltage and current loops: no need of ultra-high speed microcontroller
• Microcontroller sets V_{OUT}, I_{OUT}, P_{OUT} + managing all “slow” variables
• Functions:
 o Analog inputs (ADC channels): V_{OUT}, I_{OUT}, $V_{\text{IN-RMS}}$, T_{AMB} → 4 x ADC
 o Analog outputs (PWM to analog): V_{OUT} and I_{OUT} REF → 2 x PWM
 o UART (CAN-bus hardware): Full-duplex → CAN RX & TX
 o General purpose I/O: → 28 GPIO
 o V_{OUT} and I_{OUT} precision: 100 ksp is sufficient, ±1% 10-bit ADC
 o V_{OUT} and I_{OUT} setting: $F_{\text{CLOCK}} = 16$ MHz and compare$_{FS} = 16000$, PWM = 1 kHz
 o No need for extra-low power consumption

• Selected MSP430F2252:
 o 16 KB + 256 B flash memory
 o 512 B RAM
Block design: Hot-swap + rev-polarity protection

- RT2 and RT3 limit current (PTC)
- Back to back FETs protect DC/DC power stage in all conditions
- Drev1, Drev2 and Rb2 protect Q9A and Q8 against reverse currents
- Current mirror Q9A, Q9B provide voltage-shifting
- “SW” switch node from a buck converter generates 13 V (V_{FLOAT})
- Discrete solution selected due to high nominal current
Paralleling modules: UART with CAN bus interface

Why use digital bus
- Battery charger is “slow” system and digital communication is necessary anyway – hardware interface already implemented
- Fixed M/S assignment – master manages battery-charging, dictates current slaves supply. Slaves simply follow commands and deliver current.
- Only one loop is active – no multi-loop stability problems, nor further parallel loop to stabilize
Module functionality: alarms and warnings

<table>
<thead>
<tr>
<th>#</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Mains too low</td>
</tr>
<tr>
<td>1</td>
<td>Mains overvoltage</td>
</tr>
<tr>
<td>2</td>
<td>Output overvoltage</td>
</tr>
<tr>
<td>3</td>
<td>Output shorted</td>
</tr>
<tr>
<td>4</td>
<td>Reverse polarity</td>
</tr>
<tr>
<td>5</td>
<td>Over temperature</td>
</tr>
<tr>
<td>6</td>
<td>Fan failure</td>
</tr>
<tr>
<td>7</td>
<td>DC/DC failure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Warning Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Output current limit</td>
</tr>
<tr>
<td>1</td>
<td>Output power limit</td>
</tr>
<tr>
<td>2</td>
<td>Input current limit</td>
</tr>
<tr>
<td>3</td>
<td>Low battery voltage</td>
</tr>
<tr>
<td>4</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>Not used</td>
</tr>
<tr>
<td>7</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Module OFF

Normal operation; yellow LED ON
PMP8740 module

FRONT PANEL
- EMI Filter & inrush limit

BACK PANEL
- PFC
- Boost
- Bridge
- Back-to-back FETs
- Output inductor
- Sync. FETs
- Output caps
- Main transformer

Main FETs and SiC diode on heatsink

Aux. power supply

μC

Dim: 125 x 170 x 290 mm

Texas Instruments – 2016/17 Power Supply Design Seminar
Test data @ 1.6 KW load (limit of the AC source)

Input voltage and current @ 90 Vac

Bridge voltage and sync. rectifier drain

Input voltage and current @ 230 Vac

PFC FET drain voltage
Module test data

PFC Power Stage Efficiency

DC/DC Power Stage Efficiency

Total Module Efficiency (plug to plug)
Summary

• Complete design of 2 kW module **PMP8740**

• Module employed in master-slave (M/S) architecture
 o Suits lead-acid and Li-Ion battery charging and redundant telecom apps

• In M/S configuration, firmware is open to
 o Master configuration + slave without display (single multi-kW module)
 o M/S architecture with paralleled modules, separable in different modules (one display + pushbuttons for each module)

• Two modules built and tested - parallel operation proven
 o ±1% unbalance

• Future developments
 o Automatic M/S assignment if the master fails: improved reliability
 o Three-phase connection architecture with (Y) and without neutral (Δ)
TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page
support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

Americas

<table>
<thead>
<tr>
<th>Country</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>0800-891-2616</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>0800-670-7544</td>
<td>1(972) 927-6377</td>
</tr>
</tbody>
</table>

Europe, Middle East, and Africa

<table>
<thead>
<tr>
<th>Country</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe Free Call</td>
<td>00800-ASK-TEXAS (00800 275 83927)</td>
<td></td>
</tr>
<tr>
<td>International</td>
<td>+49 (0) 8161 80 2121</td>
<td></td>
</tr>
<tr>
<td>Russian Support</td>
<td>+7 (4) 95 98 10 701</td>
<td></td>
</tr>
</tbody>
</table>

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Asia

<table>
<thead>
<tr>
<th>Country</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1-800-999-084</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>800-820-8682</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>800-96-5941</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>000-800-100-8888</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>001-803-8861-1006</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>080-551-2804</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>1-800-80-3973</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>0800-446-934</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>1-800-765-7404</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>800-886-1028</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>0800-006800</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>001-800-886-0010</td>
<td></td>
</tr>
</tbody>
</table>

Note: Toll-free numbers do not support mobile and IP phones.

Important Notice:
The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

The platform bar and E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
<td>Copyright © 2016, Texas Instruments Incorporated</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td></td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
<td></td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td></td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td></td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td></td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td></td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processes</td>
<td>www.ti.com/omap</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
</tr>
</tbody>
</table>