

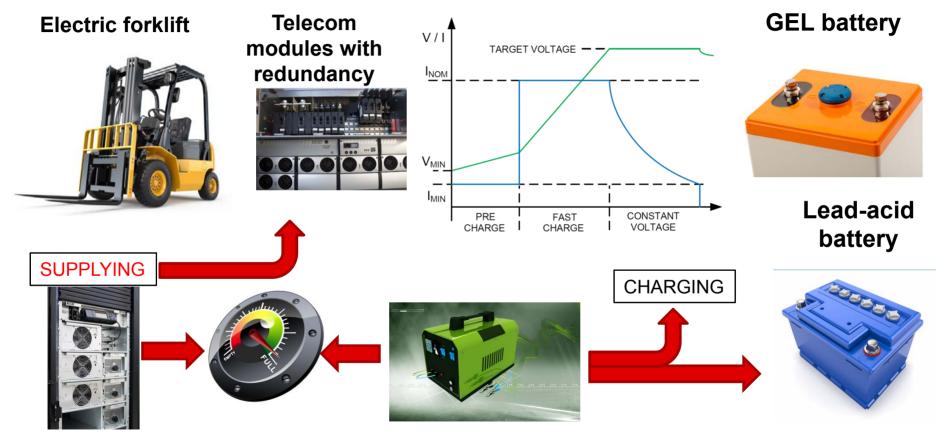
Power Supply Design Seminar

Design review of a 2-kW parallelable power supply module

Reproduced from 2016 Texas Instruments Power Supply Design Seminar SEM2200 TI Literature Number: **SLUP349** © 2016, 2017 Texas Instruments Incorporated

Power Seminar topics and online power training modules are available at:ti.com/psds

Design review of a 2 kW parallelable power supply module


Roberto Scibilia

Agenda

- Introduction
- Topology selection:
 - o First stage: PFC, single phase, or interleaved?
 - o Second stage: Half-bridge, resonant LLC or full-bridge phase shift?
- Module design
 - $_{\odot}$ EMI filter, PFC and auxiliary power supply
 - o Input AC voltage sensing
 - o Full-bridge, phase-shift resonant
 - o Microcontroller
- Digital parallel: using CAN bus (non-standard) to perform parallel and data interchange
- Test data on 2 kW battery charger module

Typical power module applications

Power supply or battery charger?

- The module can be generic power supply or customized as battery charger
- Typical application:

 $_{\odot}$ Telecom power supply with redundancy

o Battery chargers for forklift

 ${\scriptstyle \odot}$ Battery chargers for electric vehicles

• After specializing the module as battery charger, new functions are needed:

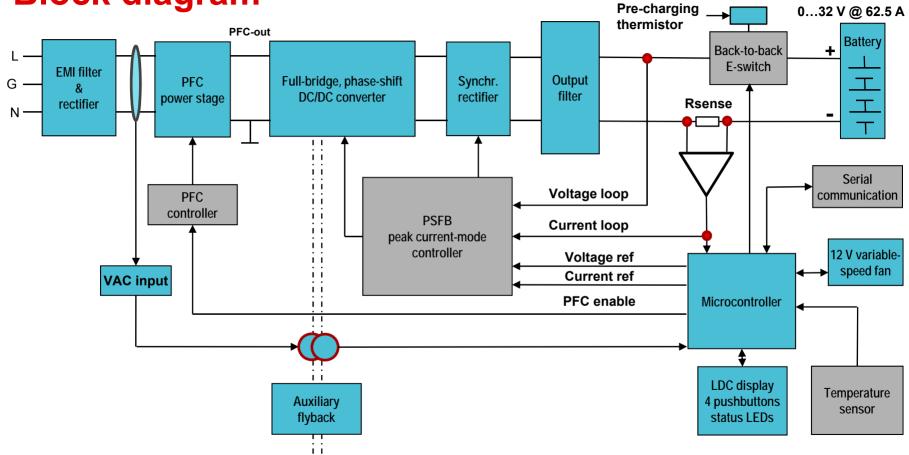
 $_{\odot}$ Hot swap for overcurrent protection

 \circ Reverse polarity protection

o Charging profile implementation

Specifications

- Nominal input AC voltage:
- Working AC voltage:
- Output voltage:
- Harmonic limits:
- Output power:
- Input current limit
- Minimum plug-to-plug efficiency: 90% (design to cost better than "80 Plus Silver")
- User interface:
- Modularity:
- Parallel function:
- Settable parameters:

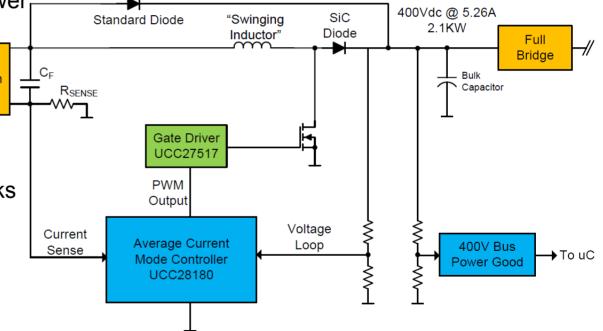

230 VAC 90 VAC...265VAC 20 V...32 V @ 62.5 A EN61000-3-2 Class A 2 kW @ 230 VAC 10 A

LCD display, 4 pushbuttons Parallel with master/slave architecture Analog or digital, CAN (non-standard) communications bus Output voltage and current levels, input AC UVLO and OVP, reverse OVP, output short, OTP, master/slave configuration (up to 1 master and 9 slaves)

Modules / chargers available today

Model	Power	V _{IN} Range	Efficiency	Power Density	Cooling	Human Interface
А	720 W at T _{AMB} < 40°C	Universal and extended	>85%	106 W / cm ³	Temperature controlled fan	Status light-emitting diode (LED)
В	1 kW	High Line (184 VAC275VAC)	96% peak	78.7 W / cm ³	Natural convection	Charging status indication (LED)
С	3 kW	High Line (184 VAC275VAC)	94% peak	116 W / cm ³	Forced convection	Charging status indication (LED)
TI prototype	2 kW at T _{AMB} < 80°C	Universal with derating	> 91% 93.5% peak	86.8 W / cm ³	Variable- speed fan	LCD Pushbuttons

Block diagram


PFC CCM boost: interleaved or single-phase?

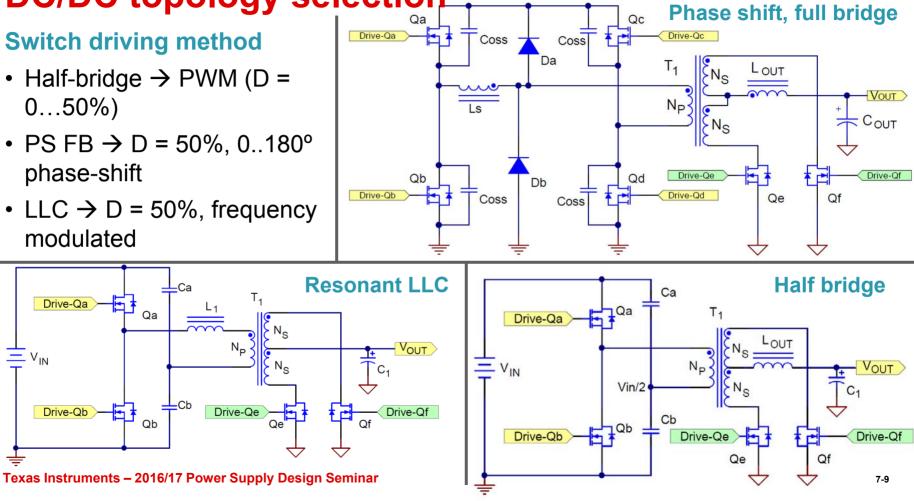
Interleaving advantages

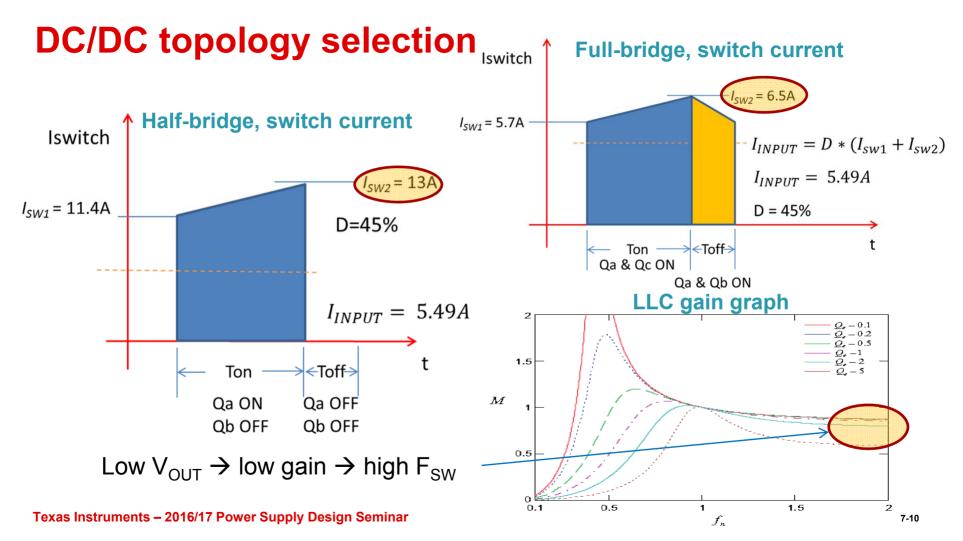
- Reduced high-frequency current ripple
- Easy EMI filtering
- Easier scalability to higher power
- Low profile possible
- More efficient thermal dissipation

Single-phase advantages

- Low overall cost solution thanks to reduced component count
- No current share problems
- Low-cost controller

DC/DC topology selection

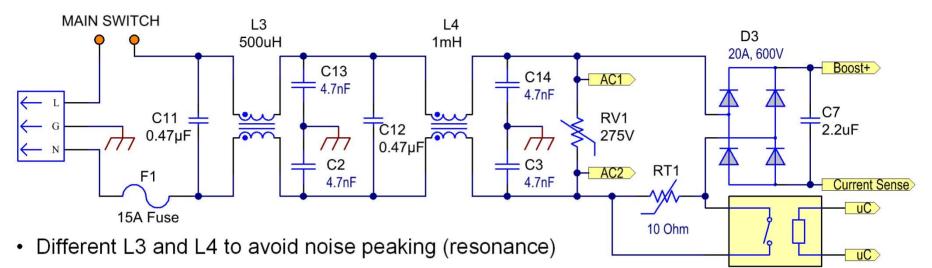

Switch driving method


- Half-bridge \rightarrow PWM (D = 0...50%)
- PS FB → D = 50%, 0..180° phase-shift
- LLC \rightarrow D = 50%, frequency modulated

Drive-Qa

Drive-Qb

— VIN

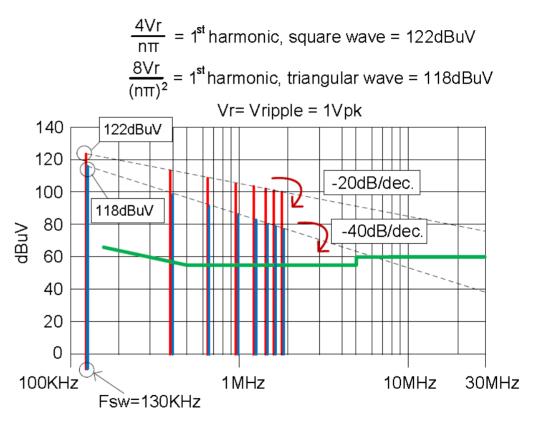


Auxiliary power supply alternatives

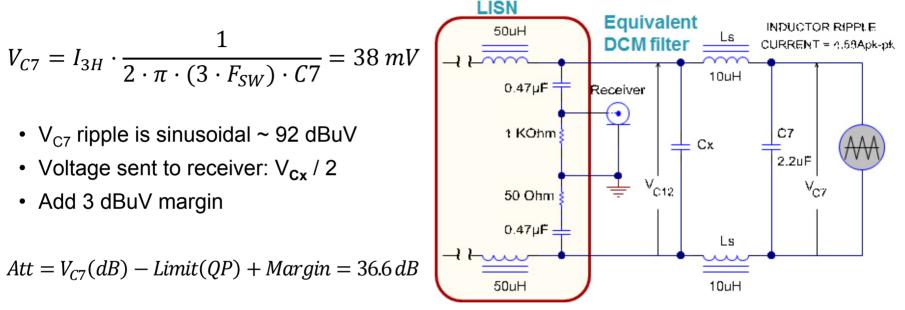
Modulation Type	Good standby power	Low cost	Opto- less	Overload protection	Good Eff.	Good V _{оит} regulation	Good transient response	ЕМІ
Quasi-resonant w/PSR	\checkmark		\checkmark	\checkmark	\checkmark	~	~	\checkmark
Quasi-resonant w/optocoupler & depl. mode FET	\checkmark	~	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Constant switching frequency + optocoupler	~	~	Х	X	~	\checkmark	\checkmark	~
$\sqrt{1}$ = Yes, X = No,	= averag	ge perfor	mance			nant w/optocc cy and standl		

Block design: EMI filter

- RT1 NTC is shorted by means of Relay
- Start with L4 arbitrary 1 mH; rate @ maximum input current
- Differential LC filter: leverage L4 leakage inductance (~1%)
- Main differential filter defined by C7, L4 and C12 // C11 (class X2)
- Class-Y capacitors needed for high-frequency and CM noise (C2, C3, C13, C14)

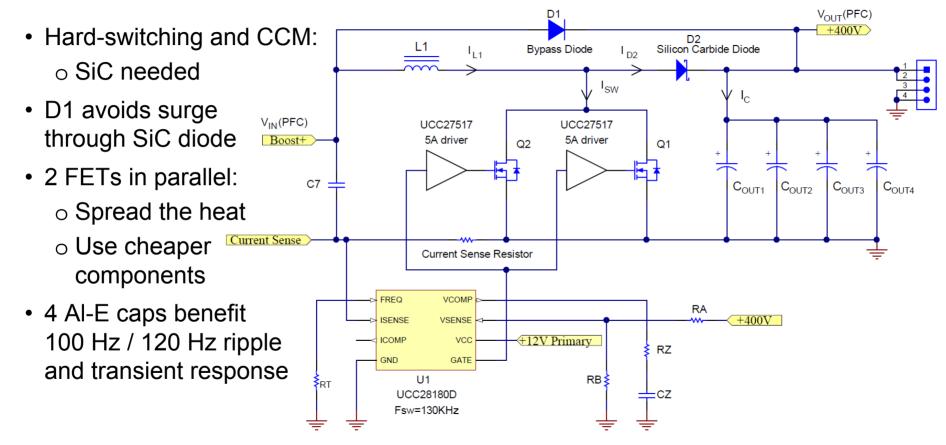

Block design: EMI filter, differential-mode

- C7 = 1.54 uF (use 2.2 uF) by:
 - Allowing 30% inductor current ripple
 - $_{\odot}$ Using 1% C7 voltage ripple
- Greatest ripple current:


@ D=50% →Ir = 4.58 Apk-pk

 Both 1 Vpk square and triangular wave → use only 3rd-harmonic to select filter

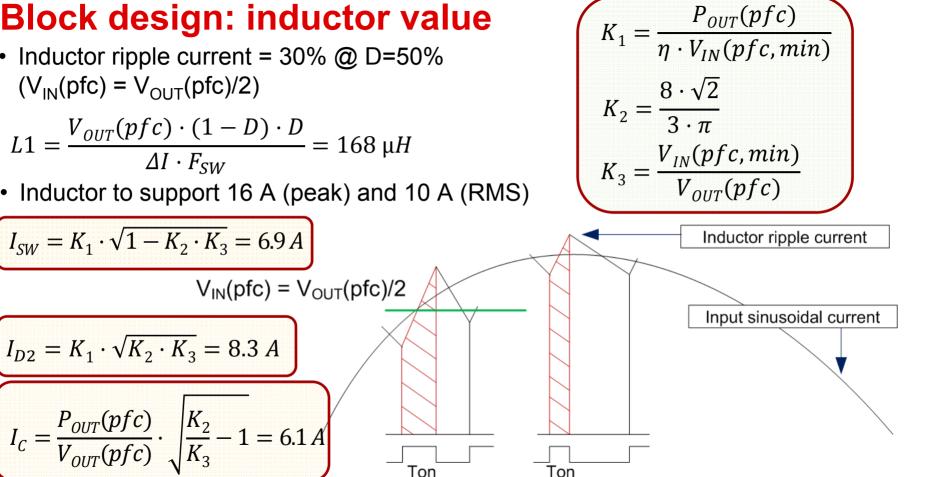
$$I_{3H} = \frac{8 \cdot (\frac{lpp}{2})}{9 \cdot \pi^2} = 0.206 A$$


Block design: EMI filter, differential-mode (cont.)

Limit(QP) = Quasi-peak CISPR22 limit @ 390 KHz = 58 dbuV

• Corner frequency Fc defined by Ls and Cx: $F_{c} = 10^{\frac{-Att}{40}} \cdot F_{3H} = 47.4 \text{ KHz} \quad C_{X} = \frac{1}{8 \cdot \pi^{2} \cdot L_{S} \cdot (F_{c})^{2}} = 563 \text{ nF}$

Block design: PFC boost



Block design: inductor value

 Inductor ripple current = 30% @ D=50% $(V_{IN}(pfc) = V_{OUT}(pfc)/2)$

$$L1 = \frac{V_{OUT}(pfc) \cdot (1-D) \cdot D}{\Delta I \cdot F_{SW}} = 168 \,\mu H$$

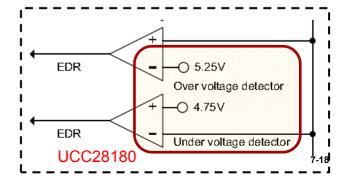
Inductor to support 16 A (peak) and 10 A (RMS)

Block design: component stress analysis

- Swinging inductor improves EMI and keeps high L
- Allow 0.2% conduction losses
- FET \rightarrow RDS_{ON} = 125 m Ω , 650 V, C_{OSS} = 53 pF
- Total FET losses \rightarrow 4.14 W per FET
- SiC \rightarrow V_{TH} = 1 V, Z_D = 0.05 Ohm

$$RDS_{ON}(EQ) = \frac{2}{1000} \frac{P_{OUT}(pfc)}{\eta \cdot (I_{SW})^2} = 0.087 \,\Omega$$
$$P_{COND}(EQ) = \frac{RDS_{ON}(EQ)}{2} (I_{SW})^2 = 3.02 \,W$$
$$P_{COSS}(EQ) = \frac{1}{2} \cdot (2 \cdot COSS) \cdot (V_{OUT}(pfc))^2 \cdot F_{SW} = 1.1 \,W$$
$$P_{SW}(EQ) = \frac{1}{2} \cdot V_{OUT}(pfc) \cdot I_{SW} \cdot (T_R + T_F) \cdot F_{SW} = 4.16 \,W$$
$$P(EQ) = P_{COND}(EQ) + P_{COSS}(EQ) + P_{SW}(EQ) = 8.28 \,W$$
$$P_{D2} = V_{TH} \cdot I_{OUT}(pfc) + Z_D \cdot (I_{D2})^2 = 8.46 \,W$$

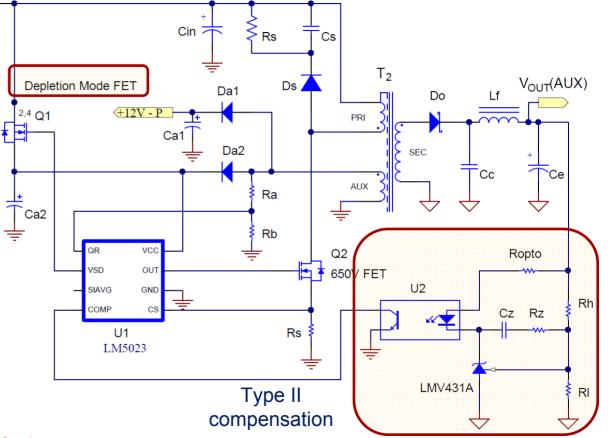
Block design: output bulk capacitor


• Output capacitance supports both hold-up time and RMS current:

$$C_{OUT}(pfc) = \frac{2 \cdot P_{OUT}(pfc) \cdot T_{HOLD}}{(V_{OUT}(pfc,nom))^2 - (V_{OUT}(pfc,nom) - V_{DROP})^2} = 1.08 \cdot 10^3 \,\mu F \left\{ \begin{array}{l} V_{DROP} = 50V \\ T_{HOLD} = 0.01 \, \text{s} \end{array} \right.$$

- Choose ~1300 uF (+ 20% due to tolerance) \rightarrow select 4 x 330 uF
- Each capacitor should support $I_{RMS} \ge 1.53 A_{RMS}$ (6.11 A / 4)
- Also check peak-peak ripple voltage @ F_{LINE} = 47 Hz:
 V_{RIPPLE} must be low enough to

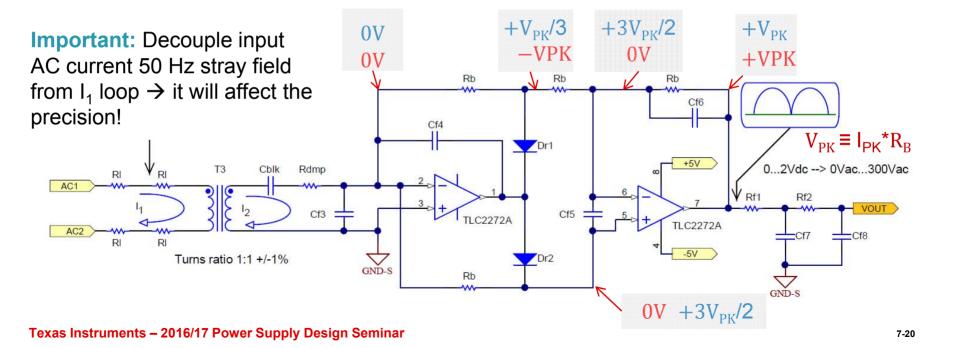
$$V_{RIPPLE}(pfc) = \frac{I_{OUT}(pfc)}{2 \cdot \pi \cdot 2 \cdot F_{LINE} \cdot C_{OUT}(pfc)} = 7.9 V$$
DONE! Less than ± 2%


Texas Instruments – 2016/17 Power Supply Design Seminar

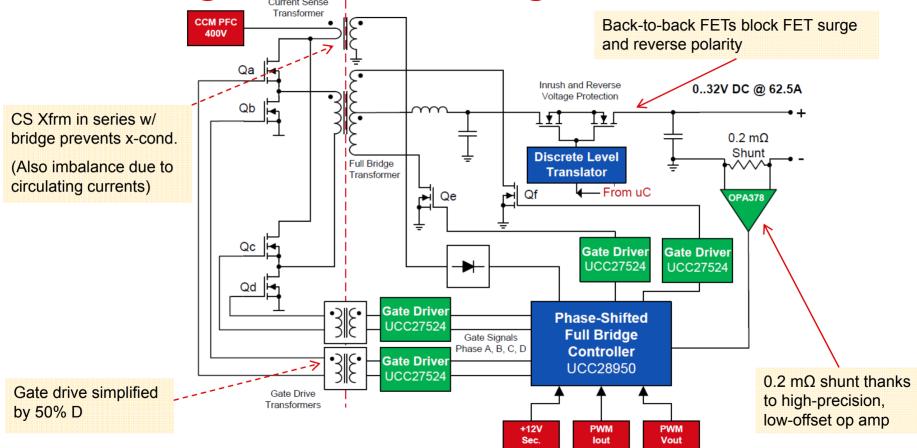
avoid OVD & UVD

Block design: auxiliary power supply $V_{IN}(AUX)$

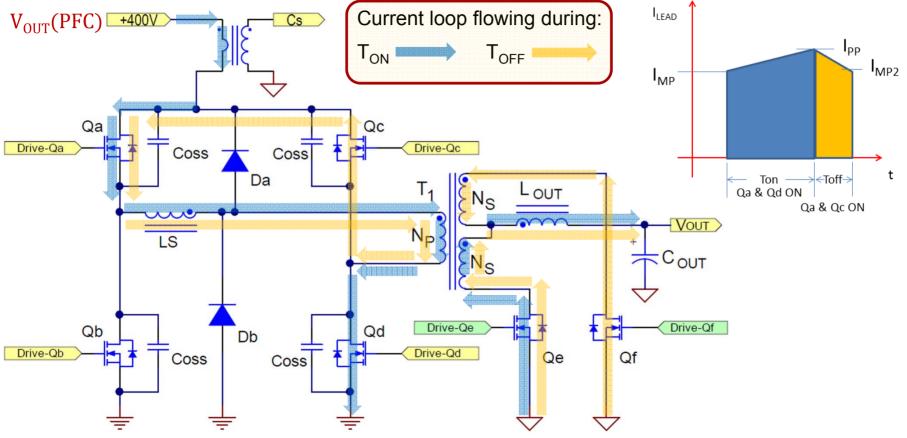

- Nominal power consumption:
 - P_{NOM} = 8.5 W \rightarrow design for 10 W
- Input voltage range V_{IN}(AUX):
 120 V (85 Vac) ... 400 V
- Switching frequency range:
 F_{SW} = 70 kHz ...120 kHz
- Select transformer turns ratio to keep V_{DS_MAX} ≤ 650 V



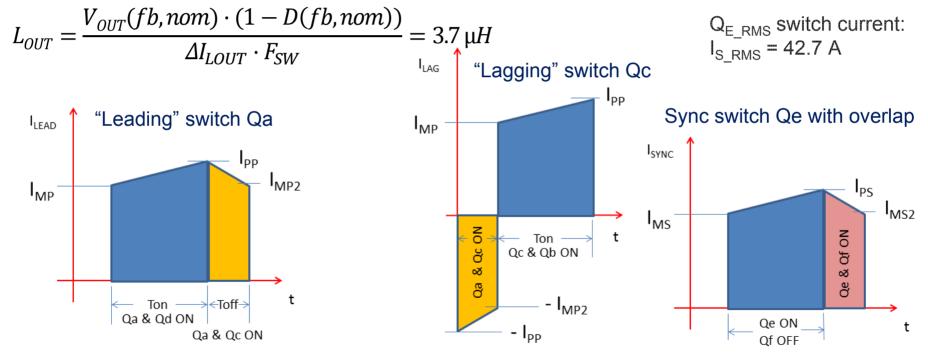
Block design: AC voltage-sensing


V_{AC} measurement needed for:

- Input under-voltage and over-voltage protection
- Limit input current per digital calculation of $V_{OUT}(fb)$, $I_{OUT}(fb)$, η



Block design: PSFB block diagram



Block design: PSFB circulating currents

Block design: PSFB waveforms

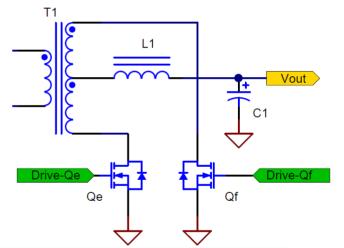
- IQa(RMS) ~ IQc(RMS)
- Set (ΔI_{Lout}) = 20%, @ V_{IN}(fb,nom) = 400 V, V_{OUT}(fb,nom) = 27 V

Block design: PSFB main FET choice

• Select loss budget = 1% of P_{OUT} on Q_A through $Q_D \rightarrow PQ_A$ = (0.25% of P_{OUT}) = 4.8W

$$P_{Qa} = \left(I_{Qa}(RMS)\right)^2 \cdot RDS_{ON}(Qa) + 2 \cdot Q_G(Qa) \cdot V_{GATE} \cdot \frac{F_{SW}(fb)}{2} \longrightarrow \mathsf{R}_{\mathsf{DS}(\mathsf{ON})} \le 0.21 \,\Omega$$

- Selected 4 x FETs, RDS_{ON} = 0.19 Ω, 17A, 650V (≥ V_{IN}(fb,max))
- Incorporates ultra-fast body diode: no spikes at light load (when ZVS is lost)
- N = Transformer turns ratio = 9.5, V_{IN} (fb,max) = 440 V
- Sync. rectification Qe and Qf must withstand $V_{DS}(Qe)$ according to:


$$V_{DS}(Qe) = \frac{2 \cdot V_{IN}(fb, max)}{N_{PS}(fb)} \cdot 1.5 = 139 V \quad (+50\% \text{ due to spikes})$$

Neglect $Q_{c}(Qa)$ (gate charge loss)

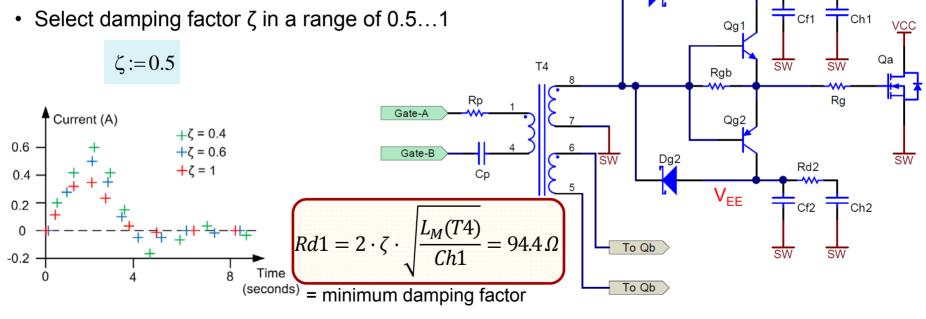
Block design: PSFB sync. FET choice

- Select 200 V FET, since we have 139 V clamped spike
- Loss (conduction) budget = 1% of P_{OUT} on Qe and Qf → P_{BUDGET}(Qe) = (0.5% of P_{OUT}) = 10 W
- Selected 4 x FETs, RDS_{ON} = 10.5 mΩ, 84A, 200 V
- Use 2 parallel FETs each for Qe and Qf

$$RDS_{ON}(EQ) \leq \frac{P_{BUDGET}(Qe)}{\left(I_{Qe}(RMS)\right)^{2}} = 5.5 \cdot 10^{-3} \Omega$$

$$P_{Qe} = \left(I_{Qe}(RMS)\right)^{2} \cdot RDS_{ON}(Qe) + \frac{P_{OUT}(fb)}{V_{OUT}(fb,nom)} \cdot V_{DS}(Qe) \cdot T_{F} \cdot \frac{F_{SW}(fb)}{2} + 2 \cdot COSS(Qe,avg)$$
$$\cdot \left(V_{DS}(Qe)\right)^{2} \cdot \frac{F_{SW}(fb)}{2} + 2 \cdot Q_{G}(Qe) \cdot V_{GATE} \cdot F_{SW}(fb) = 25.2W$$

Block design: PSFB resonant inductor

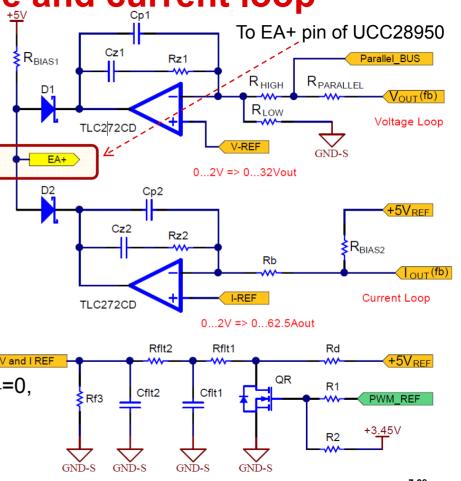

- + E_{STORE} in L_{S} charges total C_{OSS} of one leg
- Achieve ZVS down to Load_{MIN} = 15% of full load \rightarrow

$$L_{S} \geq 2 \cdot COSS(Qa, avg) \cdot \frac{(V_{IN}(fb, nom))^{2}}{\left[\text{LOAD}(\min) \cdot \left(I_{PP} - \frac{\Delta I_{LOUT}}{N_{PS}(fb)}\right)\right]^{2}} - L_{LK} = 1.13 \cdot 10^{-5}H$$

- Where: L_LK = 3.5 uH (0.1% of magnetizing inductance) \rightarrow L_s = 10 μH
- L_S RMS current and T1 primary current are the same (have only AC component)
- Select PQ20/20 platform with:
 - $-\Delta B_{PK}$ = 118 mT, 10 turns Litz wire (160x0.1 mm)
 - N97 EPCOS core, gap 0.77 mm, μ_E = 57
 - Results in copper losses = 0.63 W and core losses = 0.57 W

Block design: PSFB FET drive

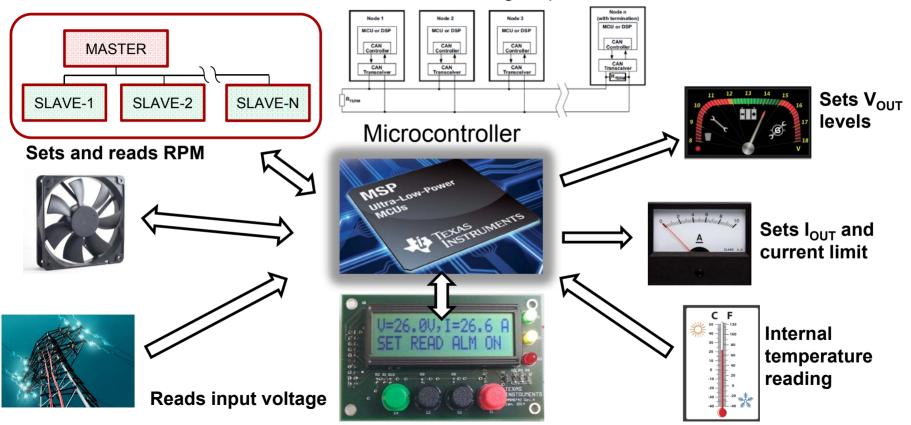
- Select turns ratio of T4 = 1:1 to get V_{DRIVE} =12V (AF4779, L_M = 0.9 mH)
- Add small R_P (~2...3 Ω) to damp primary winding + C_P =1 uF to remove DC comp.
- $Cf_{1,2}$ hold V_{DD} = +12 V and V_{EE} = -12 V voltages during driving peaks (used 22 nF)
- + $\mathrm{Rd}_{\mathrm{1,2}}$ are needed to damp the oscillation on V_{DD} & V_{EE}



V_{DD}

Rd1

Block design: PSFB voltage and current loop

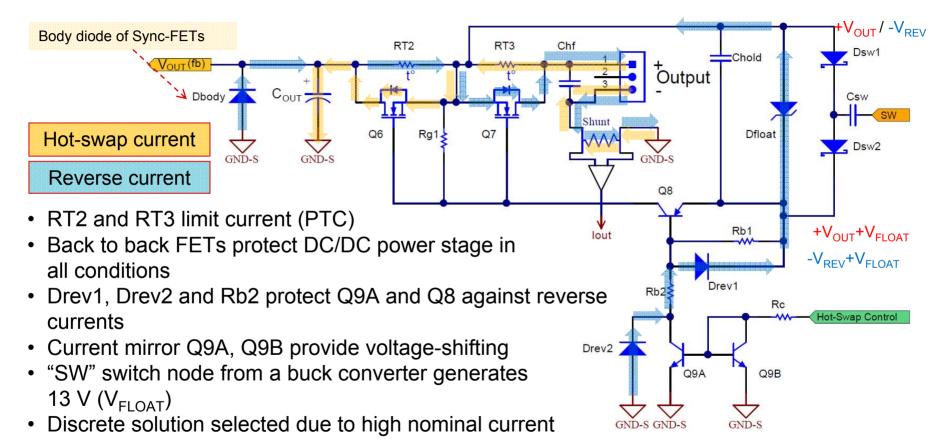

- DAC achieved by PWM-toaverage → V-REF, I-REF
- Chosen Rflt1 = 2 * Rflt2 and Cflt2 = 2 * Cflt1 \rightarrow same F_{CO}
- By selecting F_{CO} = 16 Hz, Rflt1 =100 K, Cflt1 = 100 nF
- R_{BIAS2} biases current loop → zero current at startup
- 2 x PWM_REF come from µC timer channels
- If PWM_REF is in three-state condition $\rightarrow V_{OUT}=0$, $I_{OUT}=0$

Block design: Leverage a microcontroller

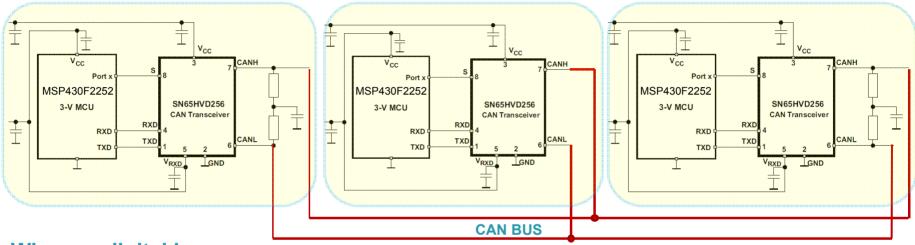
Master-slave architecture

CAN bus and digital parallel

Block design: Choice of Microcontroller


- Slow voltage and current loops: no need of ultra-high speed microcontroller
- Microcontroller sets V_{OUT} , I_{OUT} , P_{OUT} + managing all "slow" variables
- Functions:

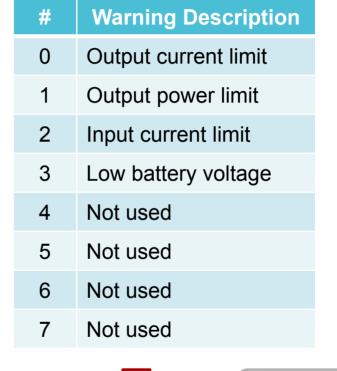
 Analog inputs (ADC channels): 	V _{OUT} , I _{OUT} , V _{IN-RMS} , T _{AMB}	\rightarrow 4 x ADC
 Analog outputs (PWM to analog): 		\rightarrow 2 x PWM
 UART (CAN-bus hardware): 	Full-duplex	\rightarrow CAN RX & TX
 General purpose I/O: 		→ 28 GPIO
 V_{OUT} and I_{OUT} precision: 	100 ksps is sufficient, ±1%	6 10-bit ADC
 V_{OUT} and I_{OUT} setting: 	F _{CLOCK} = 16 MHz and compare	e _{FS} = 16000, PWM = 1 kHz
 No need for extra-low power cons 	umption	


Selected MSP430F2252:

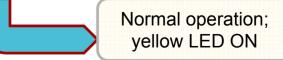
 16 KB + 256 B flash memory
 512 B RAM

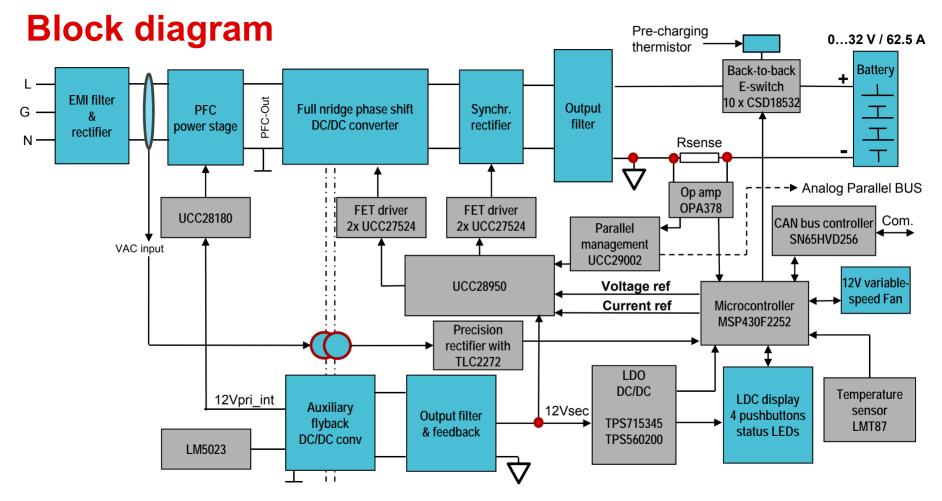
Block design: Hot-swap + rev-polarity protection

Paralleling modules: UART with CAN bus interfaceMASTERSLAVE #1......SLAVE #n

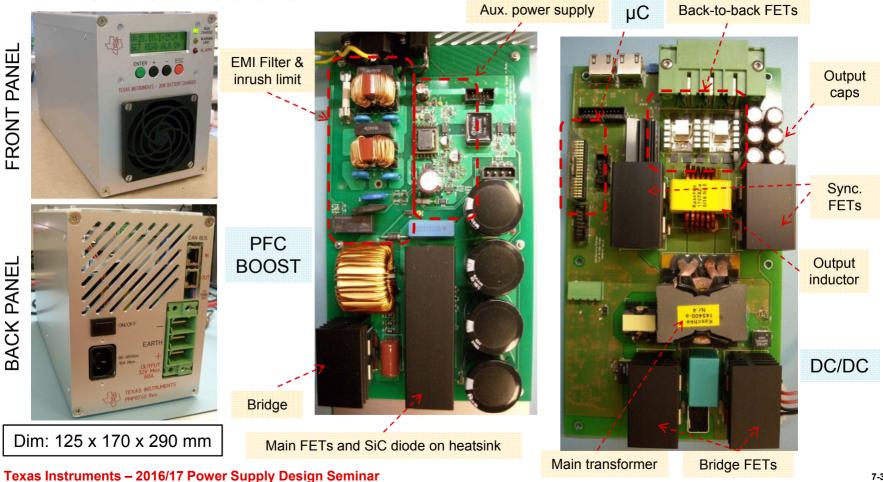


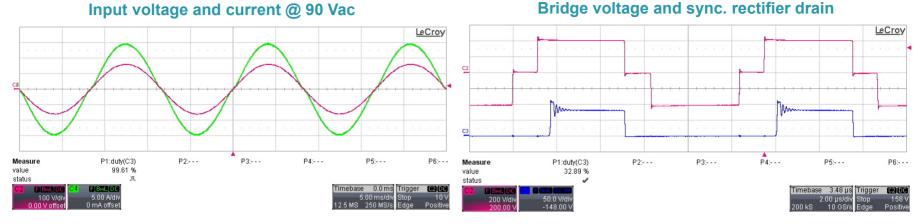

Why use digital bus


- Battery charger is "slow" system and digital communication is necessary anyway hardware interface already implemented
- Fixed M/S assignment master manages battery-charging, dictates current slaves supply. Slaves simply follow commands and deliver current.
- Only one loop is active no multi-loop stability problems, nor further parallel loop to stabilize

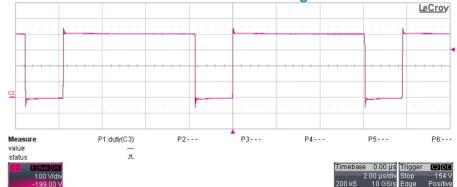

Module functionality: alarms and warnings

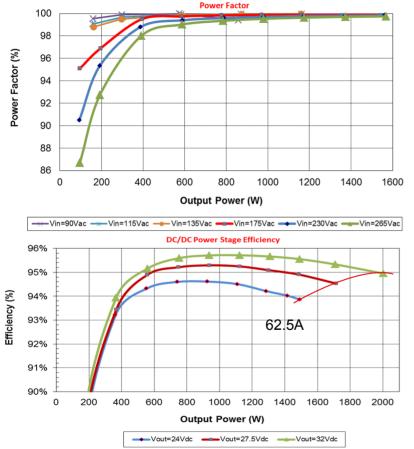
#	Alarm Description
0	Mains too low
1	Mains overvoltage
2	Output overvoltage
3	Output shorted
4	Reverse polarity
5	Over temperature
6	Fan failure
7	DC/DC failure

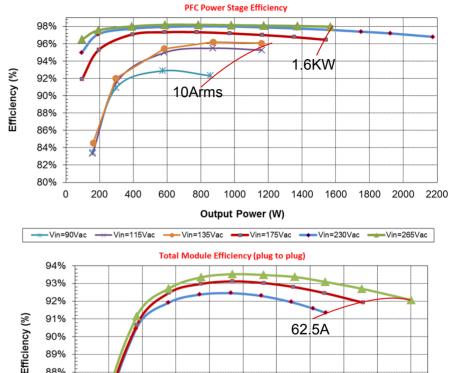





PMP8740 module


Test data @ 1.6 KW load (limit of the AC source)


Input voltage and current @ 230 Vac



PFC FET drain voltage

Module test data

92% 91% 90% 89% 88% 86% 85% 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Output Power (W)

Vout=24Vdc -Vout=27.5Vdc -Vout=32Vdc

Texas Instruments – 2016/17 Power Supply Design Seminar

Summary

- Complete design of 2 kW module PMP8740
- Module employed in master-slave (M/S) architecture
 Suits lead-acid and Li-Ion battery charging and redundant telecom apps
- In M/S configuration, firmware is open to
 - Master configuration + slave without display (single multi-kW module)
 - M/S architecture with paralleled modules, separable in different modules (one display + pushbuttons for each module)
- Two modules built and tested parallel operation proven
 - \circ ±1% unbalance
- Future developments
 - o Automatic M/S assignment if the master fails: improved reliability
 - $_{\odot}~$ Three-phase connection architecture with (Y) and without neutral (Δ)

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page support.ti.com TI E2E[™] Community Home Page

e2e.ti.com

Product Information Centers

Americas	Phone	+1(512) 434-1560
Brazil	Phone	0800-891-2616
Mexico	Phone	0800-670-7544
	Fax Internet/Email	+1(972) 927-6377 support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

European Free Call	00800-ASK-TEXAS (00800 275 83927)		
International	+49 (0) 8161 80 2121		
Russian Support	+7 (4) 95 98 10 701		

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax	
Internet	

+(49) (0) 8161 80 2045 www.ti.com/asktexas

asktexas@ti.com

Direct Email Japan

Phone	Domestic	0120-92-3326
Fax	International	+81-3-3344-5317
	Domestic	0120-81-0036
Internet/Email	International	support.ti.com/sc/pic/japan.htm
	Domestic	www.tij.co.jp/pic

Asia

Phone	
International	+91-80-41381665
Domestic	Toll-Free Number
Note: Toll-free	e numbers do not support mobile and IP phones.
Australia	1-800-999-084
China	800-820-8682
Hong Kong	800-96-5941
India	000-800-100-8888
Indonesia	001-803-8861-1006
Korea	080-551-2804
Malaysia	1-800-80-3973
New Zealand	0800-446-934
Philippines	1-800-765-7404
Singapore	800-886-1028
Taiwan	0800-006800
Thailand	001-800-886-0010
International	+86-21-23073444
Fax	+8621-23073686
Email	tiasia@ti.com or ti-china@ti.com
Internet	support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

B021014

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated