Control and Design Challenges for Synchronous Rectifiers

Reproduced from
2018 Texas Instruments Power Supply Design Seminar SEM2300
TI Literature Number: SLUP379
© 2018 Texas Instruments Incorporated

Power Supply Design Seminar resources are available at: www.ti.com/psds
Control and Design Challenges for Synchronous Rectifiers

Bing Lu
Outline

• Background
 – Motivation and benefits of using synchronous rectifier

• Control method
 – Control-driven and self-driven
 – Based on V_{DS} sensing
 – Based on volt-second balancing
 – Adaptive control

• Design challenges
 – Selection of SR MOSFET
 – Operation in CCM, noise, bias, EMI, etc.

• Summary
Power Supply Efficiency and Power Density

Higher Power Density with Same Adapter Size

Typical Mark on AC/DC Adapters

- Efficiency standard pushes higher requirement
- High power density requires higher efficiency

4 Point Average Efficiency

<table>
<thead>
<tr>
<th>Year</th>
<th>Efficiency Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0.83</td>
</tr>
<tr>
<td>2004</td>
<td>0.84</td>
</tr>
<tr>
<td>2006</td>
<td>0.85</td>
</tr>
<tr>
<td>2008</td>
<td>0.86</td>
</tr>
<tr>
<td>2010</td>
<td>0.87</td>
</tr>
<tr>
<td>2012</td>
<td>0.88</td>
</tr>
<tr>
<td>2014</td>
<td>0.89</td>
</tr>
<tr>
<td>2016</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Loss Elements in Converters

- Output diode often carries entire load current
- Diode forward voltage drop can be directly related to efficiency loss
- Loss percentage gets worse when output voltage is low

\[
P_{\text{DIODE}} = V_f \cdot I_{\text{OUT}}
\]

Diode Loss Percentage

\[
\eta_{\text{DIODE}} \approx \frac{V_f}{V_{\text{OUT}}}
\]

Can we do better?
By replacing diode with synchronous rectifier, conduction loss can be significantly reduced by low on-resistance.

Higher efficiency can be expected for low voltage applications.

SBRT20M60SP5

CSD18532KCS

$R_{DS(ON)} = 5.3 \text{ mΩ @ 25°C}$
Loss Comparison for a Typical Waveform

- Large conduction loss saved by replacing diode with synchronous rectifier
SR Control in Different Applications

- Some topologies can easily implement SR control without dedicated controller IC
- Flyback, active clamp flyback, LLC, etc. applications usually need dedicated SR-controller, due to its complexity

Synchronous Buck

- Complementary driving signal

Active Clamp Forward Converter

- Self-driven based on transformer voltage
SR Control Based on V_{DS} Sensing

- Monitoring SR drain-to-source voltage (V_{DS})
 - When body-diode is conducting, V_{DS} crosses $V_{TH_{ON}}$, controller turns ON SR
 - When V_{DS} decreases to $V_{TH_{OFF}}$, current is approaching zero, controller turns OFF SR
SR Control Based on Volt-Second Balancing

- Volt-seconds are balanced in each switching cycle for DCM flyback — it can be used for SR control
 - Less sensitive to noise
- Only valid for DCM, can’t work for LLC or active clamp flyback
Adaptive SR Control

- Adjust SR conduction time to minimize body diode conduction time
- Optimize SR conduction loss
- Complicated control for tuning and dealing with transient
SR Selection: Conduction Loss

- Turn-off threshold is a fixed value
 - Larger $R_{DS(ON)}$ results in smaller turn-off current and less body diode conduction time
 - Smaller $R_{DS(ON)}$ causes larger turn-off current and more body diode conduction time

- $R_{DS(ON)}$ should be chosen with consideration of turn-off threshold

\[
I_{OFF} = \frac{V_{TH_OFF}}{R_{DS(ON)}}
\]
SR Selection: Switching Loss

\[P_{SR} = P_{CON} + P_{SW} + P_{DRV} \]

Conduction loss

\[P_{CON} = I_{RSM}^2 \cdot R_{DS(ON)} \]

Switching loss

\[P_{SW} = \frac{1}{2} C_{OSS(eq)} \cdot V_{DS}^2 \cdot f_{SW} \]

Driver loss

\[P_{DRV} = C_{ISS} \cdot V_{DRV}^2 \cdot f_{SW} \]

- Lower \(R_{DS(ON)} \) results in lower conduction loss, but larger \(C_{OSS} \) and \(C_{ISS} \)
- SR should be chosen to consider balance between conduction loss and switching loss
 - Efficiency is measured at 4-point average
 - 10% load efficiency concern
SR Operation in CCM

- High $\frac{di}{dt}$ caused by high voltage and low inductance
- Need to turn off SR really fast

\[
\frac{di}{dt} = \frac{V_O + \frac{V_{IN}}{N_{PS}}}{L_{LK}}
\]

\[
\frac{di}{dt} = \frac{V_{IN}}{N_{PS}} \frac{1}{L_{LK}}
\]

\[
\frac{di}{dt} = \frac{V_O + \frac{V_{IN} + V_{CR}}{N_{PS}}}{L_R \frac{N_{PS}}{N_{PS}^2}}
\]
V_{DS} Sensing Operation in CCM

- During CCM operation, $\frac{di}{dt}$ changes significantly.
- Comparator needs to respond fast.

![Diagram](image-url)
V_{DS} Sensing Operation in CCM

- \(\frac{di}{dt} \) is determined by leakage inductor
- Comparator needs to respond fast to minimize negative current
Diode Operation in CCM

- Diode causes negative current due to reverse recovery
 - Fast reverse recovery time results in less negative current
 - Less Q_{RR} results in less switching loss
- Turning off SR too late is similar to large reverse recovery current

SR Body Diode and Reverse Recovery Loss
(Based on 100 kHz Estimation)

<table>
<thead>
<tr>
<th>SR</th>
<th>Q_{RR}</th>
<th>Reverse Recovery Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1@ 30 V V_{DS}</td>
<td>127 nC</td>
<td>0.381 W</td>
</tr>
<tr>
<td>SR2@ 75 V V_{DS}</td>
<td>385 nC</td>
<td>2.887 W</td>
</tr>
</tbody>
</table>
Early vs. Late Turn-Off

- Ideally, SR should turn off late but not too late to cause too much negative current
- Bottom line, shoot through time should be shorter than body diode reverse recovery time
Noise at Turn-On and Turn-Off of SR

- Due to parasitic circuit elements, ringing waveforms can often be observed after SR is turned on and off.
- When ringing voltage approaches controller thresholds, ringing might cause false trigger (turn off too soon after turn-on or turn on too soon after turn-off).
- Minimum on-time and off-time can help to blank ringing and avoid false trigger.
Dealing with Noise

- Turn-on blanking is required to avoid false turn-off
- Turn-off blanking is required to avoid false turn-on
• Due to sinusoidal current shape, SR controller could interpret initial low current as current approaching zero and turns off SR too early
• To avoid early turn-off, a minimum on-time is required until current rises above turn-off threshold (V_{TH_OFF})
Parasitic Inductor Impacts on SR Operation

L_D and L_S are packaging parasitic inductors and can’t be eliminated.

Negative $\frac{di}{dt}$ on L_D and L_S causes voltage drop and offsets $R_{DS(ON)}$ drop.

Voltage drop causes SR early turn-off and generates more conduction loss.

Low package inductance devices should be used.

\[
V_{SENSE} = - \left[I_{SR} \cdot R_{DS(ON)} + \left(L_D + L_S \right) \cdot \frac{dI_{SR}}{dt} \right]
\]
V_{DS} Sensing and Proportional Gate Drive

- When SR current is small, conduction loss is small, increasing conduction loss a little won’t impact efficiency much
 - Instead of fully turning on SR into a resistor, SR can be controlled as a voltage source (much lower than diode)

- This extra control makes SR gate drive voltage proportional to current
 - Speed up turn-off, easier for CCM operation
 - Higher voltage drop, less sensitive to parasitic inductor
Natural EMI Cancellation of Flyback

- At MOSFET turn-off
 - MOSFET drain voltage rises, generates current on C_2
 - Diode anode voltage rises, generates current on C_1

- Currents on C_1 and C_2 are flowing in opposite directions and can cancel each other
Why Moving Rectifier to Ground Side Is Worse

- When moving rectifier to ground side
 - C_1 has no current because voltage potential across it is zero
 - At MOSFET turn-off
 - MOSFET drain rises \rightarrow diode cathode falls \rightarrow current flowing through C_2
- Cancelation effect is lost
How to Power SR Controller

- Easiest way to power SR controller is from output voltage
 - Put SR on return path, shares same ground as output
- Driver loss might be significant if output voltage is high
 - Aux winding can be used to save driving loss
- Special applications require wide V_{DD} range, for example, USB-PD
When SR is on high side, SR MOSFET source is on switching node
- Aux winding provides most efficient way
- RCD or linear regulator can be used to create V_{DD}, but efficiency is much lower
Standby Power Requirements

• Efficiency standards for external power supplies (EPS)
 - For less than 49 W rated power
 - European Commission, Tier 2 – January 2016 75 mW
 - U.S. Department of Energy – Feb. 10th, 2016 100 mW

![No-load consumption score chart](chart)

• Lower standby power is desired even for design margin and system functions such as USB-PD control
Keep SR IC in Sleep Mode

- SR IC consumes ~1 mA during normal operation, with 20 V output, it is already 20 mW
- SR IC can be kept in sleep mode based on converter timing
 - Modern controller often burst with high power and frequency-based detection is more reliable
Typical Measurement Waveform

- Much reduced conduction loss
- Watch out for body diode conducting
Summary

- Power supplies are getting more and more efficient
- Diode conduction loss can be improved by replacing with synchronous rectifier
 - Conduction loss reduction
 - Extra switching loss and driving loss
- SR can be controlled with different methods, V_{DS} sensing is most popular
- Things to watch out for:
 - Select suitable MOSFET (not lowest R_{DS_ON} MOSFET)
 - Make sure enough blanking time
 - Fast turn-off in CCM condition
 - Parasitic inductors
 - How to power controller
 - EMI consideration
TI Support
Thank you for your business. Find the answer to your support need or get in touch with our support center at
www.ti.com/support
China:
http://www.ti.com.cn/guidedsupport/cn/docs/supporthome.tsp
Japan:
http://www.tij.co.jp/guidedsupport.jp/docs/supporthome.tsp

Technical support forums
Search through millions of technical questions and answers at TI’s E2E™ Community (engineer-to-engineer) at
e2e.ti.com
China:
http://www.deyisupport.com/
Japan:
http://e2e.ti.com/group/jp/

TI Training
From technology fundamentals to advanced implementation, we offer on-demand and live training to help bring your next-generation designs to life. Get started now at
training.ti.com
China:
http://www.ti.com.cn/general.cn/docs/gencontent.tsp?contentId=71968
Japan:
https://training.ti.com/jp

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

The platform bar and E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated