Comparison of GaN- and Silicon FET-Based Active Clamp Flyback Converters
Comparison of GaN- and Silicon FET-Based Active Clamp Flyback Converters

Pei-Hsin Liu

ABSTRACT

This session demonstrates how an active clamp flyback converter achieves zero voltage switching (ZVS) and recycles the leakage energy of the transformer to improve efficiency in higher frequency operation. Although it is well known that switch node capacitance determines the circulating energy for ZVS, the capacitance-nonlinearity impact from each of the two primary-side switches and from the secondary synchronous rectifier has not been well understood. In this session, design tradeoffs with differing nonlinearity of junction capacitances from each of the switching devices are investigated across full load to deep light load operation, and then proper control strategies to overcome the capacitance nonlinearity are proposed. Additionally, analytical equations and design procedures are developed with consideration to the nonlinearity impact. Finally, the above studies and control method are supported with experimental results and simulation results on a 30 W adapter using state-of-the-art GaN and silicon FETs.

I. INTRODUCTION

With the rapid development of portable devices and the quick charging technology of batteries, the increasing load demand requires the travel adapter to have significant power density improvement. Moreover, the migration of high-current USB Type- C™ cables and the new USB Power Delivery (PD) standard urge the need for more efficient power conversion [1][2]. Three start-of-the art topologies for travel adapters have been proposed: conventional passive-clamp flyback (PCF) [3][4][5], active-clamp flyback (ACF) [6][7][8] and three-level LLC resonant converters [9]. Figure 1 shows the circuit diagram of the three topologies and Table 1 summarizes the technology comparison of three power stage designs for a 65 W notebook adapter. Both ACF and three-level LLC can achieve soft switching, which eliminates switching loss in high frequency operation (higher than 130 kHz). These converters reduce the passive component size of the transformer, EMI filter and output capacitors for higher power density designs.

A PCF circuit contains a high voltage diode in series with a TVS or an R-C circuit; in contrast, an ACF is constructed with a high voltage FET in series with a clamp capacitor. Therefore, migrating PCF to ACF, as in Figure 1(a), mainly introduces one more switch and an additional high-side driver to be equipped with soft switching capability. On the other hand, migrating PCF to the three-level LLC, as in Figure 1(b), requires three additional primary high-side switches and three high-side drivers to generate the desired PWM pattern, which significantly increases the BOM cost.
Figure 2 compares the efficiency of a 65 W output across a wide AC input voltage range, including the output cable loss. From a full load efficiency perspective, ACF can provide close to 2% higher efficiency than PCF. Although three-level LLC provides even higher efficiency than ACF, the BOM cost is not easily justified for the cost-sensitive adapter market.

<table>
<thead>
<tr>
<th>Product</th>
<th>Topology</th>
<th>Power Density</th>
<th>f_{SW(min)} (kHz)</th>
<th>Primary Switch</th>
<th>High-Side Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PCF</td>
<td>11 W/in³</td>
<td>150</td>
<td>1 pcs</td>
<td>0 pcs</td>
</tr>
<tr>
<td>B</td>
<td>ACF</td>
<td>14 W/in³</td>
<td>120</td>
<td>2 pcs</td>
<td>1 pcs</td>
</tr>
<tr>
<td>C</td>
<td>Three-level LLC</td>
<td>17 W/in³</td>
<td>300</td>
<td>4 pcs</td>
<td>3 pcs</td>
</tr>
</tbody>
</table>

Table 1 – Comparison of three 65 W notebook adapter designs.

![Figure 2 – Cable-end efficiency comparison of three topologies in high frequency operation.](image)

A. Review of DCM Flyback with Passive Clamp

As shown in Figure 3(a), after the low-side switch (Q_L) turns off, high di/dt current flows through the leakage inductance of the transformer (L_k) and creates a high voltage stress on Q_L, so the L_k energy needs to be dissipated on a passive clamp circuit to prevent the voltage stress from damaging Q_L. From the loss Equation (1), the closer the clamp voltage of TVS (V_{CLAMP}) is to the reflected voltage (N_{VOUT}), the higher the clamping loss (P_{CLAMP}). It also shows P_{CLAMP} proportionally increases with f_{SW}, which becomes one of the hurdles for high frequency design when the peak magnetizing current (I_{m(+)}) is held constant. After the magnetizing current (I_m) is demagnetized to 0 A, the flyback converter operates in discontinuous conduction mode (DCM), so the magnetizing inductance (L_m) and the switch node capacitance (C_{SW}) start to resonant and the DCM ringing dies out gradually. Since Q_L still turns on at a high voltage across the bulk input capacitor (V_{BULK}) for the next cycle, an additional turn-on switching loss (P_{SW(DCM)}) is created on Q_L. The P_{SW(DCM)} expression in Equation (2) is also proportional to f_{SW}, which becomes another hurdle for high f_{SW} design. Figure 4 quantifies the percentage of the two losses respective to the full power on a 30 W adapter design. Even though both losses only contribute 2% at 100 kHz switching, they will contribute more than 5% each at 300 kHz switching, which becomes the dominate loss of the DCM flyback converter.

\[
P_{CLAMP} = \frac{V_{CLAMP}}{V_{CLAMP} - N_{VOUT}} \frac{1}{2} L_k I_{m(+)}^2 f_{SW} \tag{1}
\]

\[
P_{SW(DCM)} = \frac{1}{2} C_{SW} V_{BULK}^2 f_{SW} \tag{2}
\]

![Figure 3 – Waveform comparison: (a) passive clamp + DCM, (b) passive clamp + TM and (c) active clamp + TM.](image)
Figure 4 – Clamping loss and switching loss contributions to a 30 W adapter.

B. Review of Transition Mode (TM)
Flyback with Passive Clamp

To lower the $P_{SW}$ of $Q_L$ in DCM operation, TM operation turns on $Q_L$ at the first valley of the DCM ringing, as shown in Figure 3(b). Compared with DCM, the switching loss becomes lower, since the turn-on point is lower than the DCM operation. Additionally, the core loss and winding loss of the transformer become lower. The reason behind this lower core loss is that TM requires less peak magnetizing current ($I_m(+)\rangle$) than DCM to operate at the same $f_{SW}$ and results in lower flux density. The TM winding loss is less because the $di/dt$ of $I_m$ is smaller than DCM and results in lower AC winding resistance [10]. However, the first disadvantage of TM operation is the inability to decay $V_{SW}$ to 0 V. The lowest first valley point is close to $V_{BULK} – NV_{OUT}$, so the switching loss ($P_{SW(TM)}$) in Equation (3) indicates a substantial turn-on loss at a high input voltage condition still exists. The second issue is the clamping loss cannot be eliminated.

$$ P_{SW(TM)} \approx 0.5 \times C_{SW} (V_{BULK} – NV_{OUT})^2 f_{SW} \quad (3) $$

C. Review of Transition Mode Flyback with Active Clamp

To fully remove the switching and clamping losses, an active clamp circuit can be used in TM operation, as shown in Figure 3(c). The circuit includes a high-side switch ($Q_H$) in series with a resonant clamp capacitor ($C_{CLAMP}$) as in Figure 1(a). During the demagnetizing time of $L_m$ and the on-state of $Q_H$, $C_{CLAMP}$ resonates with $L_k$ to recycle the $L_k$ energy to the output, so the clamp loss can be eliminated. If $Q_H$ keeps its on-state after the resonance is finished, $I_m$ is further changed in the reverse direction. After $Q_H$ turns off, the negative magnetizing current ($I_m(-)$) discharges $C_{SW}$ to bring $V_{SW}$ down to 0 V before turning on $Q_L$, so the switching loss can also be eliminated. However, the additional negative current enlarges the flux density, so the core loss is higher than TM. Also, the resonance current is a part of the current flowing through the primary and secondary windings of the transformer, so total winding loss is also higher than TM. Therefore, it is possible that negative current that is too large can wash out the efficiency benefit of ACF, if $C_{SW}$ is too large. Table 2 summarizes the loss distributions and trade-off of the three flyback topologies.

<table>
<thead>
<tr>
<th>Operation</th>
<th>CLAMP</th>
<th>$P_{CLAMP}$</th>
<th>$P_{SWITCHING}$</th>
<th>$P_{CORE}$</th>
<th>$P_{WINDING}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCM</td>
<td>Passive</td>
<td>High</td>
<td>Higher</td>
<td>Higher</td>
<td>Middle</td>
</tr>
<tr>
<td>TM</td>
<td>Passive</td>
<td>High</td>
<td>Middle</td>
<td>Lower</td>
<td>Lower</td>
</tr>
<tr>
<td>TM</td>
<td>Active</td>
<td>$\approx 0$ (to output)</td>
<td>$\approx 0$ (ZVS)</td>
<td>Middle</td>
<td>Higher</td>
</tr>
</tbody>
</table>

Table 2 – Loss comparison of three flyback topologies.
so $I_m$ flows through the body diode of $Q_H$ to charge $C_{CLAMP}$ first. In the fourth region (IV), when $Q_H$ is conducted as $V_{GS(QH)}$ is high, $NV_{OUT}$ starts to demagnetize $L_m$, so $I_m$ starts to decay and $L_m$ releases its energy to the output. At the same time, $C_{CLAMP}$ absorbs the $L_k$ energy by resonating with $L_k$, so $I_{CLAMP}$ is in the positive direction. In the fifth region (V), $I_{CLAMP}$ starts resonating in the reverse direction, so $I_{SEC}$ becomes higher, which indicates both magnetizing and leakage energy are being released to the output. The sixth region (VI) occurs after the resonance is completed. The secondary diode rectifier turns off naturally at zero current (ZCS), so $NV_{OUT}$ cannot further demagnetize $L_m$. Instead, the clamp capacitor voltage ($V_{CLAMP}$) takes over to continue to demagnetize $L_m$ as $Q_H$ keeps conducting, so $I_m$ keeps going in the reverse direction before $Q_H$ turns off. In the last region where $Q_H$ turns off, the negative magnetizing current, $I_m(-)$, starts to discharge $C_{OSS(QL)}$, charge $C_{OSS(QH)}$ and charge the junction capacitance of the secondary rectifier, so $V_{SW}$ falls from a high level to 0 V. Finally, back to the first region, $Q_L$ turns on as $V_{SW}$ reaches 0 V, so ZVS is obtained. From the energy balance concept, Equation (4) highlights that the energy stored on $L_m$ with $I_m(-)$ should be at least larger than the energy stored in the lumped capacitance ($C_{SW}$), so as to complete ZVS.

$$\frac{1}{2} L_m I_{m(-)}^2 \geq \frac{1}{2} C_{SW} V_{SW}^2$$

Equation (4) also indicates that larger $C_{SW}$ requires higher $I_m(-)$ for ZVS. It is well known that a GaN FET has much less junction capacitance than a silicon MOSFET. For example, for the similar channel on-resistance ($R_{DS(ON)}$) ranging from 500 mΩ to 600 mΩ, GaN has almost three times less time-related capacitance than silicon (Si). This benefit results in lower peak-to-peak $I_m$ ($I_{m(PK-PK)}$) for less core loss, lower RMS $I_{PRI}$ ($I_{PRI(RMS)}$) for less winding loss and lower RMS $I_{CLAMP}$ ($I_{CLAMP(RMS)}$) for less conduction loss on $Q_H$. Figure 7 compares the switching current waveforms of ACF and the difference of RMS current for the two state-of-the-art GaN and Si FETs with similar $R_{DS(ON)}$, when a Schottky diode is used as the secondary rectifier. The result shows that GaN enables more than a 22% reduction in $I_{m(PK-PK)}$ and $I_{PRI(RMS)}$, compared with Si FET. Moreover, the performance gap between silicon and GaN for ACF is not just a different magnitude of $C_{OSS}$, but also the capacitance nonlinearity is significantly different, as shown in Figure 8. For GaN FETs, for example, the capacitance difference of the drain-to-source voltage ($V_{DS}$) between 20 V and 400 V is not dramatic. Also, when $R_{DS(ON)}$ reduces, the capacitance is proportionally increased. On the other hand, for silicon FET, the capacitance becomes significantly larger as $V_{DS} < 20$ V. Compared with $V_{DS}$ at 400 V, the capacitance at 20 V is almost 100 times larger for $R_{DS(ON)} = 680$ mΩ. Furthermore, as the $R_{DS(ON)}$ reduces to 180 mΩ, the value at 20 V is almost 300 times larger. Therefore, it is important to understand how different levels of capacitance nonlinearity between GaN and silicon FETs impact the ACF performance and how to minimize the impact to reduce the efficiency gap between the two distinct devices.
Figure 6 – Equivalent circuit of ACF operation in different switching states.
III. NONLINEARITY IMPACT OF DEVICE CAPACITANCE AND SOLUTION

A. Impact on ZVS Voltage Transition

When $V_{SW}$ decays from a high to low level by discharging $C_{SW}$ with $I_{m(-)}$, the falling slope of $V_{SW}$ can be greatly affected by the capacitance nonlinearity, as shown in Figure 9 above. For a GaN FET, $C_{OSS}$ is less nonlinear, so the $V_{SW}$ transition is close to a first-order reduction. For a silicon FET, three different falling slopes are observed on the $V_{SW}$ waveform which exhibits a shallow slope at the beginning, becomes a sharper edge and then returns to a shallow slope at the end. The upper flat region is mainly from the high capacitance region of $Q_H$ $C_{OSS}$ curve and partly from the junction capacitance of the output rectifier, while the lower flat region comes mainly from the high capacitance region of the $Q_L$ $C_{OSS}$ curve. The first system impact is because the silicon FET requires a dead time three times longer for the voltage transition than GaN and the resulting duty-cycle loss limits higher $f_{SW}$ operation. The second impact is that more $I_{m(-)}$ is needed to overcome the two high capacitance regions.

Firstly, it is found that proper $C_{CLAMP}$ selection helps to reduce the impact of the upper flat area on $V_{SW}$. Figure 10(a) shows an example of a silicon-based ACF with a smaller $C_{CLAMP}$ design of 100 nF which makes the resonance clamp current finish before $Q_H$ turns off. In this case, $I_{m(-)}$ is the only current source to discharge the high capacitance region of $Q_H$. On the other hand, if $C_{CLAMP}$ can be increased to a point, 600 nF for example, that the resonance cannot be completed at the end of the
QH off-time, the negative clamp current ($I_{\text{CLAMP}(-)}$) becomes an extra current source to discharge the high capacitance region of the QH $C_{\text{OSS}}$ curve, in addition to $I_{m(-)}$. With that, not only the time spent on the upper flat area is shortened, but also $I_{m(-)}$ is reduced, from -0.9 A to -0.8 A in this case. The energy-balance Equation (5) is another perspective to understand this effect, where the ZVS criteria contains not only a part of the $L_m$ energy from $I_{m(-)}$, but also a part of the $L_k$ energy from $I_{\text{CLAMP}(-)}$.

$$\frac{1}{2} L_m I_{m(-)}^2 + \frac{1}{2} L_k I_{\text{CLAMP}(-)}^2 \geq \frac{1}{2} C_{SW} V_{DS}^2$$  \hspace{1cm} (5)

Secondly, it is found that proper QL turn-on point selection helps reduce the impact of the lower flat area on $V_{\text{SW}}$. As the $C_{\text{OSS}}$ curve of the silicon FET in Figure 8 indicates, if the ZVS target is to turn on QL by waiting for $V_{\text{SW}}$ to reach to 0 V, large $I_{m(-)}$ is required to discharge the high capacitance region. If it is possible to turn on QL at a given $V_{\text{SW}}$ before $C_{\text{OSS}}$ starts to grow rapidly, $I_{m(-)}$ can be significantly reduced. This technique is referred to as partial ZVS in this paper. As the partial ZVS point is chosen at 20 V for this example, there is a 14% reduction on both RMS primary current for less winding loss and peak-to-peak magnetizing current for less core loss, as shown in Figure 11. The efficiency data in Figure 12(a) demonstrates that performing partial ZVS at 20 V further improves the full load efficiency 0.5%. Figure 12(b) shows a more detailed study on where the optimal partial ZVS target is for a silicon FET with 680 mΩ. From the total loss reduction with respect to the ZVS point moving from 0 V to 60 V, the result indicates that 20 V obtains the biggest loss reduction, but loss reduction has diminishing returns when the partial ZVS point is higher than 20 V. This effect can be understood from the design trade-off between the RMS current reduction and switching loss increase, as shown in Figure 13. As the partial ZVS point moves higher, $I_{\text{PRI(RMS)}}$ continues to reduce. However, a partial ZVS point means a hard switching point of QL, so the turn-on switching loss grows at the same time. Since the turn-on loss of the silicon FET can increase rapidly after 10 V, the conduction loss reduction will be gradually washed out by the switching loss increasing. Therefore, this indicates 10 ~ 20 V is suitable for a silicon FET when the turn-on loss grows rapidly above the voltage range, while full ZVS is best for GaN FET.

![Diagram](image-url)
Figure 11 – Impact of ZVS target on switching waveforms: (a) full ZVS and (b) partial ZVS at 20 V.

Figure 12 – Improvement of partial ZVS to: (a) full load efficiency and (b) power loss reduction.

Figure 13 – Design trade-off of partial ZVS: (a) primary RMS current and (b) turn-on switching loss of $Q_L$.

B. Impact on Resonance Clamp Current

$C_{SW}$ has contributions not only from the $C_{OSS}$ of the two primary switches, but also from the junction capacitance of the secondary rectifier, either a Schottky diode or a synchronous rectifier (SR). Table 3 compares the switching current waveforms with the combination of different primary switches and different secondary-rectification devices. When a diode is used as the rectifier, the shape of the switching current waveform between a GaN and silicon FET is similar, and the main difference is just the different peak-to-peak and RMS current levels. On the other hand, when SR is used as the secondary rectifier, the shape of the current waveform becomes significantly different. When using silicon FETs as the two primary switches, there is only a small current dip on $I_{PRI}$ before the resonance of $I_{CLAMP}$ starts, as a SR is used. The RMS current difference between using a Schottky diode and SR is not much, since the current dip effect on the RMS current is almost negligible. When using GaN FETs as the two primary switches and silicon SR as the rectifier, a big current dip reduces the initial
The resonance current of I\textsubscript{CLAMP} which significantly lowers the RMS current compared with using a Schottky diode. In this example, 34% reduction in the RMS current with this current dipping effect benefits the winding loss reduction as well as conduction loss reduction of Q\textsubscript{H}.

According to Faraday’s law in Equation (6), the current dip phenomenon on the primary current, i.e. a di/dt current change on I\textsubscript{PRI}, can be understood by examining the voltage change across the L\textsubscript{k} inductance, which is the voltage difference between the reflected voltage from the secondary winding (NV\textsubscript{SEC}) and the voltage across the transformer primary winding (V\textsubscript{PRI}), as shown in the equivalent circuit of Figure 14(a).

$$\frac{dI\textsubscript{PRI}}{dt} = \frac{1}{L\textsubscript{k}} (NV\textsubscript{SEC} - V\textsubscript{PRI})$$  \hspace{1cm} (6)

The negligible current dipping for silicon-based ACF with SR is explained as follows. Since the SR is off as the current dipping occurs, NV\textsubscript{SEC} is equal to the voltage difference between the drain-to-source voltage on the SR FET and V\textsubscript{OUT}. Similarly, since Q\textsubscript{H} is off as well, V\textsubscript{PRI} is equal to the voltage difference between the drain-to-source voltage of Q\textsubscript{H} and V\textsubscript{CLAMP}. Since both sides use silicon FET, the C\textsubscript{OSS} changes significantly as V\textsubscript{DS} varies. Figure 14(b) compares the capacitance nonlinearity between C\textsubscript{OSS(QH)} and the junction capacitance of SR (C\textsubscript{OSS(SR)}) reflected to the primary side. The result shows that there is a certain higher V\textsubscript{DS} range where C\textsubscript{OSS(QH)} is smaller than the reflected capacitance from SR (C\textsubscript{OSS(SR)}/N\textsuperscript{2}) and there is another lower V\textsubscript{DS} range where C\textsubscript{OSS(QH)} is significantly larger than C\textsubscript{OSS(SR)}/N\textsuperscript{2}. When peak I\textsubscript{m} (I\textsubscript{m(+1)}) starts to discharge both, this capacitance difference creates different rising slopes on V\textsubscript{PRI} and NV\textsubscript{SEC}, as the simulation result shows in Figure 15(a). In the first portion of the figure, V\textsubscript{PRI} rises faster than NV\textsubscript{SEC}, since C\textsubscript{OSS(QH)} is smaller. In the second portion, V\textsubscript{PRI} rises much slower than NV\textsubscript{SEC}, since C\textsubscript{OSS(QH)} becomes larger. The rising slope variation causes a different voltage polarity across L\textsubscript{k} in Equation (6). In the first portion, the voltage across L\textsubscript{k} is negative, so the dI\textsubscript{PRI}/dt is negative. In the second portion, the voltage across L\textsubscript{k} becomes positive, so the dI\textsubscript{PRI}/dt becomes positive. This explains why a current dip occurs at the beginning and disappears afterward in Figure 15(a). Losing the current dipping effect, the initial

<table>
<thead>
<tr>
<th>Primary Switch</th>
<th>Secondary Rectifier</th>
<th>Schottky Diode</th>
<th>Sync. Rectifier (SR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon FET (650 Ω)</td>
<td>I\textsubscript{CLAMP( RMS)}=686 mA</td>
<td>I\textsubscript{CLAMP( RMS)}=600 mA</td>
<td></td>
</tr>
<tr>
<td>GaN FET (500 Ω)</td>
<td>I\textsubscript{CLAMP( RMS)}=530 mA</td>
<td>I\textsubscript{CLAMP( RMS)}=349 mA</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 – Switching waveform comparison with different types of secondary rectifiers.
resonance current is almost equal to \(I_{m(+)}\). Then, the benefit of SR for silicon-based ACF is mainly the reduction of the conduction loss on the secondary rectifier.

![Diagram of ACF with SR](image)

For a GaN FET, the current dip effect is more significant, which reduces the initial resonance clamp current. This effect is also explained by the \(C_{OSS}\) difference in Figure 14(b), which shows that \(C_{OSS(QH)}\) of GaN is always smaller than \(C_{OSS(SR)}/N^2\) across all \(V_{DS}\) ranges. Therefore, as \(I_{m(+)}\) starts to discharge both capacitances, the rising slope of \(V_{PRI}\) is always higher than \(NV_{SEC}\). With this, the voltage polarity across \(L_k\) in Equation (6) stays negative, which forces \(dI_{PRI}/dt\) to also stay negative before resonance starts. In this case, SR for GaN-based ACF does not just reduce the conduction loss on the secondary side, but also benefits the conduction loss reduction on both \(Q_H\) and the primary winding of the transformer. Simply speaking, a win-win situation is obtained for both the primary and secondary sides. The efficiency measurement in Figure 16 indicates a 2.5% improvement across a wide line range, as a diode rectifier is replaced by a SR with \(R_{DS(ON)} = 28 \text{ m}\Omega\). This efficiency boost cannot be seen in silicon-based ACF with SR, since the current dipping effect is lost by the high capacitance region of \(Q_H\). However, lower \(R_{DS(ON)}\) does not mean more efficiency improvement for a GaN-based ACF topology. The efficiency test result using a 14 m\(\Omega\) SR is almost the same as using 28 m\(\Omega\), so it means that the \(R_{DS(ON)}\) benefit is washed out by other additional losses. First, lower \(R_{DS(ON)}\) creates higher capacitive loading, so the higher peak-to-peak magnetizing current increases the core loss. Secondly, the lower \(R_{DS(ON)}\) FET with a larger gate charge \(Q_G\) increases the gate driving loss.

![Figure 14](image)

**Figure 14 – Cause of current dipping:**
(a) voltage difference on primary and secondary and (b) \(C_{OSS}\) difference.

![Figure 15](image)

**Figure 15 – Current dipping effect with SR:** (a) Si-based ACF and (b) GaN-based ACF.
C. Impact on Light Load Efficiency

The light load efficiency of ACF is also very sensitive to $C_{\text{OSS}}$ nonlinearity. As the load current becomes lighter, the conventional peak current-mode control reduces the positive peak current ($I_{m(+)}$) to regulate the output power, while the negative magnetizing current ($I_{m(-)}$) stays the same in the same $V_{\text{BULK}}$ condition. $I_{m(+)}$ delivers active energy to the output, while $I_{m(-)}$ stores the circulating energy to achieve ZVS. If $I_{m(+)}$ and $I_{m(-)}$ become more and more comparable as the load becomes lighter, it means that the transformer efficiency becomes worse, since the contribution of the circulating energy is getting higher. For silicon-based ACF with highly nonlinear $C_{\text{OSS}}, I_{m(-)}$ is larger, especially at high line, so the impact at a light load becomes more significant and the efficiency deteriorates very quickly. The measurement result in Figure 17(a) shows that the efficiency difference between 50% load and 25% can be as high as 7.3%. On the other hand, for GaN-based ACF, $I_{m(-)}$ is much lower than silicon-based ACF due to its low $C_{\text{OSS}}$. As the load becomes lighter, the $I_{m(-)}$ impact is less severe, so it results in only 2.6% efficiency difference between a 50% load and 25% load. Therefore, it is important to understand what kind of light load mode operation is most suitable for ACF to maintain good efficiency. Conceptually, the most critical requirement of an ideal light load mode for ACF is to maintain $I_{m(+)}$ relatively higher than $I_{m(-)}$. Then, the question is how to maintain regulation of the output voltage if a certain $I_{m(+)}$-to-$I_{m(-)}$ ratio would like to be maintained.

Therefore, burst mode control is proposed in this paper to meet this goal, the PWM pattern of which is shown in Figure 18. $V_{\text{GS(QL)}}$ is set as the first pulse to build up the bootstrap voltage of the high-side driver first before $Q_H$ starts switching, and the second $V_{\text{GS(QL)}}$ pulse turns on $Q_L$ close to valley switching. The following pulses operate in ZVS condition, since $V_{\text{GS(QH)}}$ is enabled. Furthermore, $V_{\text{GS(QH)}}$ of the last pulse is purposely disabled to prevent generating unnecessary $I_{m(-)}$ to trigger a large DCM resonance between $I_m$ and $C_{SW}$, since the excessive ringing can create additional core loss. The output power regulation is based on modulating the burst off-time, as the energy per switching cycle in a burst packet is fixed, i.e. $I_{m(+)}$ is fixed and is chosen at a certain current level which provides a reasonable $I_{m(+)}$-to- $I_{m(-)}$ ratio. After the last pulse per burst packet ends, $V_{\text{GS(QL)}}$ and $V_{\text{GS(QH)}}$ are completely turned off to terminate the power delivery. As the load becomes lighter, the burst off-time becomes longer before the next burst event.

![Figure 16 – Impact of current dipping of GaN-based ACF on full load efficiency.](image)

![Figure 17 – Light load efficiency of 30 W ACF with diode rectifier: (a) Silicon and (b) GaN.](image)
Since the proposed burst control is able to keep a high \( I_{m(+)} \)-to-\( I_{m(-)} \) ratio, the light load efficiency can be significantly improved. From the test result under \( V_{BULK} = 200 \) V shown in Figure 19(b), there is 2.4\% efficiency improvement at a 25\% load with the proposed burst control, compared with conventional peak current control. An additional benefit is limiting the \( f_{SW} \) variation in peak current control. By the nature of TM operation, as \( I_{m(+)} \) reduces with a lighter load, \( f_{SW} \) grows higher and higher. The \( f_{SW} \) variation in Figure 19(a) shows that as a 100\% load is switched at 330 kHz, a 25\% load is switched at 600 kHz. This not only brings a challenge for MOSFET driving, but also increases other switching-related losses. As burst mode is applied at a 50\% load, the fixed \( I_{m(+)} \) limits \( f_{SW} \) from changing.

The number of pulses per packet is defined as \( N_{SW} \). The test result in Figure 20(a) shows that as \( N_{SW} \) increases (more grouped pulses), the efficiency becomes higher. However, more grouped pulses mean higher output ripple (\( \Delta V_{OUT} \)) as shown in Figure 20(b). Besides, higher \( N_{SW} \) makes the burst frequency (\( f_{BUR} \)) enter the audible noise range at heavier loads, so Equation (7) is derived to estimate how \( f_{BUR} \) varies with the output load and \( N_{SW} \). This equation contains a ratio of \( I_{OUT} \) and \( I_{OUT(BUR)} \). \( I_{OUT(BUR)} \) is the predetermined output load condition starting at the burst and \( I_{OUT} \) is the lighter load condition lower than \( I_{OUT(BUR)} \). For example, if the burst starts at a 50\% load, operating at a 25\% load results in a current ratio of 0.5. In other words, as the load becomes lighter, \( f_{BUR} \) will be lower. Another dependency of this equation is the \( N_{SW} \) and \( f_{SW} \) of each pulse. So, as \( N_{SW} \) is higher, \( f_{BUR} \) will be further reduced as well.

\[
f_{BUR} = \frac{I_{OUT}}{I_{OUT(BUR)}} \frac{f_{SW}}{N_{SW}}
\]

![Figure 18 – Proposed burst mode operation for ACF.](image)

![Figure 19 – Benefit of burst mode for silicon-based ACF: (a) \( f_{SW} \) change and (b) light load efficiency.](image)

![Figure 20 – Impact of \( N_{SW} \) determination for burst mode: (a) light load efficiency and (b) output ripple.](image)

The complete control law over a wide load range is shown in Figure 21, which explains how the critical parameters are changed. At a heavier load, \( I_{m(+)} \) is gradually reduced by a peak current...
loop as the load decreases, so $f_{SW}$ increases. This region is defined as AM operation (amplitude modulation). In AM, the burst mode has not started yet, so the burst frequency is 0 Hz. Further, lower $I_{m(+)}$ reduces $\Delta V_{OUT}$, so the worst-case $\Delta V_{OUT}$ always occurs at a full load condition. After $I_{m(+)}$ is reduced to a predetermined peak current threshold ($I_{m(BUR)}$), the burst mode control starts to clamp $I_{m(+)}$ to this level, so $f_{SW}$ is clamped at the same time. Then, $f_{BUR}$ starts to move into a lower frequency range as $I_{OUT}$ reduces. When more pulses are grouped, the control loop enters burst operation at heavier loading. It is possible that when $f_{BUR}$ falls into the audible noise range (below 20 kHz), the transformer can generate disturbing noise. Additionally, $\Delta V_{OUT}$ increases with more grouped pulses. It is possible that if $N_{SW}$ is not properly selected, the worst-case $\Delta V_{OUT}$ can occur at very light load conditions instead of full load conditions, which increases the output capacitor size needed to meet the output ripple requirement.

**IV. Analysis and Design Procedure of an ACF Power Stage**

A. Analytical Expression of ACF Operating Condition

First, the technique of triangular approximation is proposed to model the resonance current waveform of ACF in complementary switching around the $V_{SW}$ transition, as shown in Figure 22(a). Then, the analytical expression of the switching frequency ($f_{SW}$) and input power ($P_{IN}$) can be easily derived from the triangular waveform. The input current of ACF is obtained by averaging the switching current waveform of the low-side switch ($I_{QL}$).

$$I_{IN} = \int_{0}^{1/f_{SW}} I_{QL}(t) dt = \frac{1}{2} [I_{m(+)} T_{r} + I_{m(-)} T_{m(-)}] f_{SW}$$

(8)

where $T_{r}$ is the rising time of $I_{m}$ from 0 A to $I_{m(+)}$ and $T_{m(-)}$ is the transition time from $I_{m(-)}$ to 0 A. With the triangular approximation, $T_{r}$ is substituted by $I_{m(+)} L_{m}/V_{BULK}$ and $T_{m(-)}$ is approximated by $I_{m(-)} L_{m}/V_{BULK}$. Next, the input power equation can be derived and simplified as

$$P_{IN} = V_{BULK} I_{IN} = \frac{1}{2} L_{m} f_{SW} [I_{m(+)}^2 - I_{m(-)}^2]$$

(9)

Since this equation shows that $I_{m(+)}$ needs to be increased to provide the same power as more $I_{m(-)}$ is needed for ZVS, the physical meaning is that the ACF transformer stores $I_{m(+)}$ as active energy for power delivery, but $I_{m(-)}$ is like a reactive energy. After that, the $f_{SW}$ expression in Equation (10) can be obtained based on the sum of $T_{r}$, $T_{m(-)}$ and the falling time from $I_{m(+)}$ to $I_{m(-)}$ ($T_{f}$), which is $(I_{m(+)} - I_{m(-)}) L_{m}/V_{BULK}$.

$$f_{SW} = \frac{1}{T_{r} + T_{m(-)} + T_{f}} = \frac{D^{-1} V_{BULK}}{2 I_{IN} L_{m} - D I_{m(-)} L_{m} + D T_{m(-)} V_{BULK}}$$

(10)

where $D$ is not the duty-cycle of the $Q_{L}$ on-time but comes from the volt-second balance of $I_{m}$. Then, $D$ is defined as

$$D = \frac{T_{r} + T_{m(-)}}{T_{r} + T_{m(-)} + T_{f}} = \frac{N V_{OUT}}{V_{BULK} + N V_{OUT}}$$

(11)

![Figure 21 - Control law across wide load range with burst mode.](image)
As long as the analytical expressions of $T_m(-)$ and $I_m(-)$ can be obtained, the above equations can be used to calculate the operating condition of ACF. For a LLC resonant converter as a double-ended topology, $L_m$ can be treated as a constant current source while discharging $C_{SW}$ so a first-order expression is used to express the $V_{SW}$ transition time [11]. Applying this current-source concept to the $L_m$ of an ACF, $T_m(-)$ may be simply equal to $C_{SW}V_{SW}/I_m(-)$. However, since the ACF as a single-ended topology only generates a small amount of $I_m(-)$ for ZVS and the state variable changes as $C_{SW}$ discharges during the $V_{SW}$ transition, the first-order approximation in LLC cannot be applied to ACF. Instead, $L_m$ and $C_{SW}$ have to be treated as a second-order tank circuit to obtain more accurate $T_m(-)$ and $I_m(-)$. Table 4 summarizes the proposed derivation results for the two parameters under a wide $V_{BULK}$ range. Starting from the $V_{BULK} \leq NV_{OUT}$ condition, $Q_H$ can turn off at the zero-crossing of $I_m$ since the voltage swing of the natural resonance between $L_m$ and $C_{SW}$ is enough to bring $V_{SW}$ down to 0 V. Based on the waveforms shown in Figure 22(b), $I_m(-)$ can be derived based on the characteristic impedance ($Z_n$) and the resonance voltage amplitude of $NV_{OUT}$, while $T_m(-)$ is a quarter of the resonance period. In this condition, the overall $V_{SW}$ transition takes half of the resonance period to complete. On the other hand, as $V_{BULK} > NV_{OUT}$, $Q_H$ has to turn off later than the zero-crossing of $I_m$ in order to create large enough $I_m(-)$. Then, as shown in Figure 22(b), the initial resonance current between $L_m$ and $C_{SW}$ is not zero, so the voltage swing does not start from the peak of the sinusoidal trajectory but starts close to a quarter of the resonant period. For this case, $I_m(-)$ can also be derived based on the characteristic impedance ($Z_n$) and the resonance voltage amplitude of $V_{BULK}$, while $T_m(-)$ is still a quarter of the resonance period.

<table>
<thead>
<tr>
<th>$V_{BULK} &gt; NV_{OUT}$</th>
<th>$V_{BULK} \leq NV_{OUT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_m(-)$</td>
<td>$T_m(-) = 0.5\pi\sqrt{L_mC_{SW}}$</td>
</tr>
<tr>
<td>$I_m(-)$</td>
<td>$I_m(-) = \frac{-V_{BULK}}{Z_n} = -\sqrt{\frac{C_{SW}V_{BULK}}{L_m}}$</td>
</tr>
<tr>
<td>$I_m(-)$</td>
<td>$I_m(-) = \frac{-NV_{OUT}}{Z_n} = -\sqrt{\frac{C_{SW}NV_{OUT}}{L_m}}$</td>
</tr>
</tbody>
</table>

Table 4 – Summary of $T_m(-)$ and $I_m(-)$ equations.
B. Analytical Expression of Switching Node Capacitance

Lumped time-related capacitance \( C_{SW} \) includes all the passive and active components in ACF, as the equivalent circuit shows in Figure 23(a). \( C_{Tr} \) comes from the winding capacitance of the transformer and \( C_{BOOT} \) is the junction capacitance of the bootstrap diode, while the rest are contributed by the junction capacitance of both the primary and secondary switches. Conceptually, \( C_{SW} \) is expressed as the sum of all capacitors reflected to the primary side in Equation (12).

\[
C_{SW} = C_{Tr} + C_{OSS(QL)} + C_{OSS(QH)} + C_{BOOT} + \frac{C_{OSS(SR)}}{N^2} \tag{12}
\]

However, the first challenge of calculating \( C_{SW} \) is that the capacitance of the active switches is very nonlinear, as illustrated in Figure 8 and Figure 14(b). The second challenge is that the device datasheets do not provide enough data points for the equivalent time-related capacitance under different drain-to-source voltages. For example, a primary 600 V silicon super-junction FET only lists an equivalent time-related capacitance at 400 V, while the datasheet of a 150 V SR FET does not even list any. The third challenge is that as a partial ZVS technique is applied, the value on the datasheet has no meaning, since the value assumes a \( V_{SW} \) transition between 400 V to 0 V.

This section provides a general expression of time-related capacitance in Equation (13) and introduces the calculation process to obtain its analytical form under an arbitrary \( V_{DS} \) of each device. The assumption is that there is no hysteresis loss effect on the \( C_{OSS} \) curve in [12][13], such that the time-related capacitance can be directly calculated through the \( C_{OSS} \) curve on the datasheet. The first step is integrating the \( C_{OSS} \) curve in the datasheet from the partial ZVS point of \( V_{th} \) to a variable \( V_{DS} \), which is \( V_{BULK} + NV_{OUT} \) for ACF. Specifically, the integration term is done by discretizing the \( C_{OSS} \) curve, calculating the area of each segment and then summing the areas together. A finer \( V_{DS} \) segment should be applied to the region with a large capacitance change on the \( C_{OSS} \) curve. The second step is dividing the integrated expression by the voltage difference between \( V_{DS} \) and \( V_{th} \), so the time-related capacitance can be plotted as the red solid curve in Figure 23(b). The third step is curve fitting the numerical values into an analytical expression. The example general form is shown in Equation (13), which is a logarithmic trend-line equation with two variables, \( X \) and \( Y \). The two variables can be easily calculated using the plotting tool in Excel software.

\[
C_{OSS(QL)}(V_{DS}) = \frac{1}{V_{DS} - V_{th}} \int_{V_{th}}^{V_{DS}} C_{OSS}(V) dV = X \cdot V_{DS}^{-Y} \tag{13}
\]

![Figure 23 – Lumped \( C_{SW} \) derivation: (a) \( C_{SW} \) breakdown of ACF and (b) time-related \( C_{OSS} \) of \( Q_L \).](image)

C. Design Procedure and Design Example

First, we must select the turn ratio (N) using four design criteria as a starting point:

1. The maximum N (\( N_{max} \)) is limited by the derated maximum drain-to-source voltage of \( Q_L \) \( (V_{DS(QL)} \_\text{MAX}) \) or \( Q_H \) \( (V_{DS(QH)} \_\text{MAX}) \). \( \Delta V_{CLAMP} \) is the difference between the maximum clamp voltage and the reflected output voltage. It can be due to either the ripple voltage of \( C_{CLAMP} \) as \( Q_H \) is active at heavier loads or the voltage overcharge of \( C_{CLAMP} \) by the \( L_k \) energy as \( Q_H \) is disabled at very light load.

\[
C_{OSS(P)(V_{DS})} = \frac{1}{V_{DS} - V_{th}} \int_{V_{th}}^{V_{DS}} C_{OSS}(V) dV = X \cdot V_{DS}^{-Y} \tag{13}
\]
(2) Minimum N (N_{MIN}) is limited by the derated maximum drain-to-source voltage of SR (V_{DS(SR),MAX}). \Delta V_{SPIKE} should account for any additional voltage spike higher than V_{BULK(MAX)/N}, when Q_H is active and turns off at a non-zero current situation (ZCS) at heavier loads. When C_{CLAMP} is too large, the non-ZCS situation occurs, since the resonance current between L_k and C_{CLAMP} cannot force I_{SEC} to return to 0 A before Q_H turns off.

(3) The minimum D at V_{BULK(MAX)} (D_{MIN}) introduces more core loss than the basic Steinmetz equation due to the triangular excitation [14], so this constraint creates another limitation on N_{MIN}.

(4) The winding loss distribution between the primary and secondary side of the transformer is the final design criteria. As N increases, the primary RMS current reduces, while the secondary RMS current increases [15][16].

\[ N_{MAX} = \frac{V_{DS(QL),MAX} - V_{BULK(MAX)}}{V_{OUT}} - \Delta V_{CLAMP} \]  
\[ N_{MIN} = \frac{V_{BULK(MAX)}}{V_{DS(SR),MAX} - V_{OUT} - \Delta V_{SPIKE}} \]  
\[ D_{MIN} = \frac{N_{MIN} V_{OUT}}{V_{BULK(MAX)} + N_{MIN} V_{OUT}} \]  
\[ P_{CORE(MAX)} = \frac{8}{\pi^2[4(D_{MIN}(1-D_{MIN}))^{1/4}]}(C_m \Delta B^a f_{SW}^b) \]  

Second, with the f_{SW} expression and a given N, L_m can be calculated based on the predetermined minimum f_{SW} (f_{SW(MIN)}) at the lowest ripple voltage (V_{BULK(MIN)}) on the bulk input capacitor for the smallest operational AC line voltage. The f_{SW(MIN)} selection of the ACF must consider the impact on full load efficiency and the EMI filter design.

\[ f_{SW(MIN)} = \frac{D_{MAX}^2 V_{BULK(MIN)}}{2 I_{IN(MAX)} L_m + D_{MAX} I_{m(-)}^2 + D_{MAX} T_{m(-)} V_{BULK(MIN)}} \]  

where \( I_{IN(MAX)} = P_{IN(MAX)}/V_{BULK(MIN)} \) and \( D_{MAX} = N V_{OUT}/(V_{BULK(MIN)} + N V_{OUT}) \), while for \( I_{m(-)} \) and \( T_{m(-)} \) refer to Table 4.
The measurement results on the full load efficiency and primary RMS current of the two power stage designs are compared in Figure 25(a) and (b), respectively. The significant RMS current reduction is contributed to by not only the low peak-to-peak $I_m$ as the calculation results show, but also the current dipping effect as explained in Section I. In the end, the GaN ACF power stage provides superior efficiency over the optimized silicon-based ACF. The difference of 2% at low line and 3% at high line is the efficiency of the DC/DC stage only. As the input stage (including the EMI filter, bridge diode, fuse and inrush current limit NTC resistor) is included, the efficiency difference will be even greater.

Figure 24 – Comparison of operating conditions of Si- and GaN-based ACF: (a) $f_{SW}$, (b) $I_{m(+)}$ and (c) $I_{m(-)}$.

Figure 25 – Performance comparison on a 30 W adapter: (a) RMS current difference and (b) full load efficiency.
**SUMMARY**

This paper provides a comprehensive analysis on how $C_{OSS}$ nonlinearity from primary and secondary switching devices impacts the switching behavior and system efficiency of the ACF across a wide load range. It is found that the superior performance of GaN-based ACF is not just due to ultralow $C_{OSS}$, but also the current dipping effect on significant primary RMS current reduction. Solutions to minimize the $C_{OSS}$ nonlinearity impact of Si-based ACF are investigated to reduce the efficiency gap with a GaN design. The proper clamp capacitor design and partial ZVS control with an optimal ZVS point are addressed and burst mode control is proposed to exhibit better average efficiency than the state-of-the-art light load control. Moreover, analytical equations are derived to simplify power stage design, accounting for $C_{OSS}$ nonlinearity. Based on this proposed design procedure, two 30 W ACF designs with state-of-the-art GaN and silicon FETs are developed and the optimal performances are compared.

**REFERENCES**


**TI Worldwide Technical Support**

**TI Support**
Thank you for your business. Find the answer to your support need or get in touch with our support center at

www.ti.com/support

China: http://www.ti.com.cn/guidedsupport/cn/docs/supporthome.tsp

Japan: http://www.tij.co.jp/guidedsupport/jp/docs/supporthome.tsp

**Technical support forums**
Search through millions of technical questions and answers at TI’s E2E™ Community (engineer-to-engineer) at
e2e.ti.com

China: http://www.deyisupport.com/

Japan: http://e2e.ti.com/group/jp/

**TI Training**
From technology fundamentals to advanced implementation, we offer on-demand and live training to help bring your next-generation designs to life. Get started now at

training.ti.com


Japan: https://training.ti.com/jp

---

**Important Notice:** The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

---

The platform bar and E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREBIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice. This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated