Bi-directional DC/DC converter topology comparison and design

HEV/EV and server applications

Sanatan Rajagopalan
Zhong Ye
Agenda

• Application overview and specifications
 o Automotive application
 o Server and Datacenter

• Topology comparison
 o Four-phase interleaved fixed frequency Bi-directional Buck converter
 o Four-phase interleaved ZVS transition-mode Bi-directional Buck converter

• UCD3138-based control scheme and implementation

• Test data comparison
 o Switching waveform comparison
 o Efficiency comparison
 o Loss Breakdown Comparison
 o Thermal
 o EMI

• Conclusions
Application overview—automotive

Today: 12-V system

- Continuous increase of electrical power consumption
- 12-V system running into limitations
- Improve efficiency for high-power loads (AC comp., pumps, …)
- Mild hybrid functionality asking for high cycling performance (lead acid not good fit for more recuperation)
- Additional savings due to intelligent networks (partial shutdown loads in the network)
- Reduce copper diameter and cost

Next step: 48-V power network extension

Texas Instruments – 2016/17 Power Supply Design Seminar
48-V / 12-V electrical system with start/stop

Parts using 48 V

- Transmission oil/fluid pump
- AC compressor
- Water pump
- Cooling fan
- Fuel pump
- Active suspension control
- 48-V / 12-V bi-directional DC/DC converter
- 48-V Li-Ion battery management
- Electric power steering
- 48-V traction motor inverter

12-V electrical system
12-V battery

12-V system
12-V battery

48-V / 12-V system
48-V Li-Ion battery management

48-V / 12-V bi-directional DC/DC converter

48-V / 12-V system
48-V Li-Ion battery management

48-V / 12-V system
48-V Li-Ion battery management
Typical 48-V / 12-V converter specification for automotive

- >96 percent efficiency
- No air or liquid cooling needed
- Multi-phases interleaved
- Phase current sharing
- Can be stacked to deliver 3 kW (3-kW buck-mode and 800-W boost-mode)
- 12-V reverse connection prevention
- Failed phase isolation
- Auto phase-shedding and offset for light-load management
- Protection including OCP, OVP, OTP
- 70 V/100 ms load-dumping BN48 surge
- 100 uA quiescent current when disabled (after 48 V is disconnected)
- CAN bus or SPI communication
Other applications: data centers and servers

Advantages of local energy storage data center deployments

- Reduce cost up to 5 times
- Eliminate up to 9% losses associated with UPS
- No requirement for a UPS or battery room
 - 25% facility footprint reduction
- Improve serviceability significantly
 - Hot-swappable
 - Minimize potential failure impact zone

* Reference from Microsoft Publication
Topology investigation

<table>
<thead>
<tr>
<th>PROS</th>
<th>Transition-mode ZVS DC/DC (sync-buck) converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard-switching, non-Isolated DC/DC (sync-buck) converter</td>
<td>• Simple control</td>
</tr>
<tr>
<td></td>
<td>• Fixed-frequency</td>
</tr>
<tr>
<td></td>
<td>• Low inductor current ripple</td>
</tr>
<tr>
<td></td>
<td>• Soft-switching, potentially high efficiency</td>
</tr>
<tr>
<td></td>
<td>• Low common-mode noise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• High-switch ringing</td>
</tr>
<tr>
<td></td>
<td>• High common-mode noise</td>
</tr>
<tr>
<td></td>
<td>• High inductor current ripple</td>
</tr>
<tr>
<td></td>
<td>• Variable frequency</td>
</tr>
<tr>
<td></td>
<td>• Complex control</td>
</tr>
</tbody>
</table>
Hard-switching and soft-switching bi-directional converter

Hard-switching converter

Buck-mode

Soft-switching converter

Boost-mode

Energy transfer direction
UCD3138 overview

Key features

- Multi-nested loop isolated digital controller
- 3 loop with 14-bit DAC reference
- 2-pole 2-zero PID filters with multi-coeff banks
- PWM, phase-shift and resonant-mode control
- Constant voltage, current and power modes
- Input voltage feed-forward and Vpri-sensing
- Peak current mode with internal slope comp.
- Cycle-by-cycle current limit with CLF counter
- 8x over sampling or averaging at EADC
UCD3138 key features (cont.)

- 12-bit ADCs with hardware filters
- 12-bit ADCs with dual hold-sampling
- Auto PWM-LLC and PWM-PS mode switching
- Burst-mode for light load operation
- Integrated copper trace current-sensing
- Integrated current-sharing circuit
- 8 high resolution DPWM outputs (250 ps)
- 32-bit, 32-MHz ARM 7 (32 KB PFlash, 4 KB DFlash)
- Multi-channel, 12-bit 256 ksp/s GP ADC
- On-chip (BOD / POR)
- Single-supply operation (3.3 V)

- Single supply operation (3.3 V)
- On-chip reference + oscillator
- 2 UART’s + programmable PMBus interface
- 2 MHz max switching frequency
- 4 ns frequency resolution
- External interrupt + fault input and output
- –40°C to +125°C extended temp range
- 64 pin and 40 pin QFN packages
- Power-saving features
- And MORE!!!
UCD3138-based control

- Three control loops: current loop, 12-V voltage loop, 48-V voltage loop
- Total current is sensed for current loop control
- Current source operation before voltages reach set points
- Phase currents are sensed for current balance
- Current command set by digital communication port or ADC input

Additional control for ZVS operation:
- Phase 1 negative current sensed
- Negative current thresholds programmed by PWM0, one to generate a sync signal
- Sync signal controls frequency modulation
Current ripple and phase number selection

- Duty cycle directly determines phase number selection
- Optimal phase numbers for 48-V /12-V buck and boost power conversion are: 4, 8, 12
- Adding phases reduces current ripple further when duty cycle is away from:
 - 0.25 in buck-mode
 - 0.75 in boost-mode
System block diagram for circuit test

Phase 1 (Master)

Phase 2

Phase 4

Connect to 4 phases of Buck/Boost

Programmable negative current limit and cycle-by-cycle control
Power stage component selection and design

<table>
<thead>
<tr>
<th></th>
<th>Hard-switching</th>
<th>Soft-switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequency</td>
<td>140 kHz</td>
<td>100 kHz- 450 kHz</td>
</tr>
<tr>
<td>Current ripple at full load</td>
<td>16.25 A (±25% ripple)</td>
<td>65 A</td>
</tr>
<tr>
<td>Inductor value</td>
<td>4.7 uH</td>
<td>1.4 uH</td>
</tr>
<tr>
<td>Inductor DC resistance</td>
<td>1.86 mΩ</td>
<td>0.618 mΩ</td>
</tr>
<tr>
<td>Inductor part number</td>
<td>SER2915H-472KL (Coilcraft)</td>
<td>Litz wire: AWG# 32, 110 strands PQ26/20 core -TDK B65877B0000R097</td>
</tr>
<tr>
<td>Inductor photos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power stage component selection and design (cont)

<table>
<thead>
<tr>
<th>Component</th>
<th>Hard-switching</th>
<th>Soft-switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main MOSFETs</td>
<td>Infineon IPB017N100N5: 100 V, 1.7 mΩ</td>
<td>Infineon IPB015N08N5: 80 V, 1.5 mΩ</td>
</tr>
<tr>
<td>Reverse protection FETs</td>
<td>CSD16556Q5B: TI, 20V, 1.062 mΩ @ 75ºC</td>
<td>CSD16556Q5B: TI, 20 V, 1.062 mΩ @ 75ºC</td>
</tr>
<tr>
<td>48-V fuses</td>
<td>Littlefuse: 0891030 30A, 2.06 mΩ @ 25ºC, 2.18 mΩ @ 90ºC</td>
<td>Littlefuse: 0891030 30 A, 2.06 mΩ @ 25ºC, 2.18 mΩ @ 90ºC</td>
</tr>
<tr>
<td>Low inductance shunt-sensing resistor</td>
<td>Panasonic ERJ-M1WTF2M0U: –2 mΩ</td>
<td>Panasonic ERJ-M1WTF2M0U: –2 mΩ</td>
</tr>
<tr>
<td>48-V input filter inductor</td>
<td>Coilcraft XAL1580-102 MEB: 1 uH 73.5 A, 0.93 mΩ typical</td>
<td>Coilcraft XAL1580-102 MEB: –1 uH 73.5A, 0.93 mΩ typical</td>
</tr>
</tbody>
</table>
Bi-directional DC/DC converter prototype 110 A
ZVS buck-switching waveform

- Max frequency = 450 kHz
- Min frequency = 104 kHz
Buck-switching waveform comparison 20 A

- Hard switching
 - 6V overshoot

- Soft-switching: negative current and ZVS
 - No overshoot
 - Soft on/off edges

- Deadtime from SyncFET turn-off to main FET turn-on = constant 220 nS
- Deadtime from main FET turn-off to sync FET turn-on varies based on Io
Buck switching waveform comparison 110 A

Hard switching (140 kHz)

Soft switching: Negative current and ZVS (104 kHz)

- Deadtime from sync FET turn-off to main FET turn-on = constant 220 nS
- Deadtime from main FET turn-off to sync FET turn-on varies based on Io
Boost-switching waveform comparison 20 A

Hard-switching (140 kHz)
- Deadtime from sync FET turn-off to main FET turn-on 37.5 nS
- Deadtime from main FET turn-off to sync FET 37.5 nS

Soft-switching: Negative current and ZVS (353 kHz)
- Deadtime from SyncFET turn-off to Main FET turn-on = constant 220 nS
- Deadtime from Main FET turn-off to SyncFET turn-on varies based on Io
Boost-switching waveform comparison 110 A

Hard-switching (140 kHz)
- Deadtime from sync FET turn-off to main FET turn-on = 37.5 nS
- Deadtime from main FET turn-off to sync FET = 37.5 nS

Soft-switching: Negative current and ZVS (104 kHz)
- Deadtime from sync FET turn-off to main FET turn-on = constant 220 nS
- Deadtime from main FET turn-off to sync FET turn-on varies based on Io

3V overshoot

8V overshoot

Hard switching

Soft on/off edges
Bi-directional operation

Programmable parameters

- 12-V battery current at buck- and boost modes
- Current ramp-up and ramp-down time
- Idle time between buck and boost operation
- 48-V and 12-V battery OVP and UVP thresholds
GUI control screen

Device GUI for circuit configuration and debug

- Facilitate firmware and hardware debug
- Change parameters while circuit is running
- Monitor register values firmware execution
- Converter status reporting

Control GUI for system test and monitoring

- Facilitate system test
- Ease system parameter setting
- Monitor system operating state and status
- Monitor battery voltage and phase currents
Loss breakdown chart at 110 A, 12-V output

*Calculated data with test data recertification
Efficiency comparison: buck-mode

- ZVS Buck
- Hard Switching Buck
- ZVS Buck w/o safety parts
- HS Buck w/o safety parts

<table>
<thead>
<tr>
<th>12 V Current / A</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>84.00%</td>
</tr>
<tr>
<td></td>
<td>86.00%</td>
</tr>
<tr>
<td></td>
<td>88.00%</td>
</tr>
<tr>
<td></td>
<td>90.00%</td>
</tr>
<tr>
<td></td>
<td>92.00%</td>
</tr>
<tr>
<td></td>
<td>94.00%</td>
</tr>
<tr>
<td></td>
<td>96.00%</td>
</tr>
<tr>
<td></td>
<td>98.00%</td>
</tr>
</tbody>
</table>
Efficiency comparison: boost-mode

Mode-switching and phase-shedding can improve light-load efficiency.
Light-load management (LLM)

- DCM operation improves efficiency by around 2% at 10 A load, compared with CCM operation.
- Ideal diode emulation (IDE) can further improve light-load efficiency (by around 0.3%-0.7%).
- Phase-shedding can be used to improve light-load efficiency when switching loss becomes dominant.
- Mode switching needed for LLM:
 - CCM → DCM/IDE → phase-shedding
 - ZVS transition-mode → DCM/IDE → phase-shedding

[Diagrams showing voltage and current waveforms for DCM control (buck-mode) and ideal diode emulation (boost mode).]
Thermal data comparison 110 A

Hard-switching buck-mode

<table>
<thead>
<tr>
<th>Component</th>
<th>Hard-switching</th>
<th>ZVS buck-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top FET / °C</td>
<td>84.75/92</td>
<td>72.0/73*</td>
</tr>
<tr>
<td>Bottom FET / °C</td>
<td>68.25/69</td>
<td>61.5/64</td>
</tr>
<tr>
<td>Core / °C</td>
<td>64/65</td>
<td>56.5/59</td>
</tr>
<tr>
<td>Winding / °C</td>
<td>77.5/78</td>
<td>62.3/64</td>
</tr>
</tbody>
</table>

*Avg. temp / max temp

Texas Instruments – 2016/17 Power Supply Design Seminar
Thermal data comparison 110 A

Hard-switching boost-mode

ZVS boost-mode

<table>
<thead>
<tr>
<th>Top FET / °C</th>
<th>Bottom FET / °C</th>
<th>Core / °C</th>
<th>Winding / °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.25/72</td>
<td>75.25/77</td>
<td>63/64</td>
<td>69.25/73</td>
</tr>
</tbody>
</table>

*Avg. temp / max temp

<table>
<thead>
<tr>
<th>Top FET / °C</th>
<th>Bottom FET / °C</th>
<th>Core / °C</th>
<th>Winding / °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.3/66*</td>
<td>75.3/76</td>
<td>65/66</td>
<td>66.75/71</td>
</tr>
</tbody>
</table>
EMI floor and bias noise (quasi-peak)
EMI comparison (quasi-peak)
Hard- versus soft-switching at buck-mode and full-load

Class 5 Avg

15 dB

Class B QP

Soft-switching

Hard-switching
Summary and conclusions

<table>
<thead>
<tr>
<th></th>
<th>Hard-switching</th>
<th>Soft-switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Better efficiency at light-load range</td>
<td>Better efficiency potential at heavy loads</td>
</tr>
<tr>
<td>Voltage spike, dv/dt and current ripple</td>
<td>Higher voltage spike and dV/dt but lower current ripple</td>
<td>Softer dv/dt and lower voltage spike, but much higher current ripple</td>
</tr>
<tr>
<td>Control complexity</td>
<td>Fixed frequency, less complexity</td>
<td>Hardware is required for cycle-by-cycle phase synchronization</td>
</tr>
<tr>
<td>Thermal</td>
<td>Higher FET temperature rise</td>
<td>Lower temperature rise and less than 75°C FET case temperature and windings</td>
</tr>
</tbody>
</table>

- One power stage designed for both hard- and soft-switching converter comparison tests
- Efficiency advantage of soft-switching at heavy load is insignificant
- Soft-switching converter can improve efficiency by optimizing inductor design
- Light-load management can improve light-load efficiency to a similar level for both controls
- EMI under 1 MHz has insignificant difference, but soft-switching exhibits up to 15 dB lower noise at higher frequency
- UCD3138 is capable of doing both hard-switching and soft-switching control
- GUI eases circuit debug and facilitates system test and monitoring
Backup Slides
Bi-directional operation 100 A

Hard-switching buck-boost with current ramping up / down

Hard-switching buck-boost with no soft off

ZVS buck-boost with no soft off

Programmable parameters
- 12-V battery current at buck-mode and boost-mode
- Current ramp-up and ramp-down time
- Idle time between buck and boost operations
- 48-V and 12-V battery OVP and UVP thresholds
UCD3138 hardware-based frequency modulation

- Sync resets master phase DPWM counter
- Sync FET is turned at Event4
- Active FET is turned on at Event1
- All deadtimes maintain unchanged
- All phases are synchronized by hardware
- All slave phases follow master phase automatically
- Slave phase offset is adjusted by firmware periodically

![Diagram of frequency modulation](attachment:image_url)
8-phase control
Power system migration

Opportunities by introducing a new voltage level. Displacement of high-power loads.

Displacing all high-power loads and implementation of new high-power functions can reduce the requirements to the DC/DC converter and the 12-volt battery significantly.

Terminology

- CRAC: computer room air conditioner
- adiabatic AHU: air-handling unit
- ADC
- PWM
- DPWM
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (“TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated