128-pin (NNB) package image

ADC07D1520CIYB/NOPB ACTIVE

7-Bit, Dual 1.5-GSPS or Single 3.0-GSPS Analog-to-Digital Converter (ADC)

Pricing

Qty Price
+

Quality information

Rating Catalog
RoHS Yes
REACH Yes
Lead finish / Ball material SN
MSL rating / Peak reflow Level-3-260C-168 HR
Quality, reliability
& packaging information

Information included:

  • RoHS
  • REACH
  • Device marking
  • Lead finish / Ball material
  • MSL rating / Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
View or download
Additional manufacturing information

Information included:

  • Fab location
  • Assembly location
View

Export classification

*For reference only

  • US ECCN: EAR99

Packaging information

Package | Pins HLQFP (NNB) | 128
Operating temperature range (°C) -40 to 85
Package qty | Carrier 60 | JEDEC TRAY (10+1)

Features for the ADC07D1520

  • Single +1.9V ±0.1V Operation
  • Interleave Mode for 2x Sample Rate
  • Multiple ADC Synchronization Capability
  • Adjustment of Input Full-Scale Range, Clock Phase, and Offset
  • Choice of SDR or DDR Output Clocking
  • 1:1 or 1:2 Selectable Output Demux
  • Second DCLK Output
  • Duty Cycle Corrected Sample Clock
  • Test pattern

Description for the ADC07D1520

The ADC07D1520 is a dual, low power, high performance CMOS analog-to-digital converter. The ADC07D1520 digitizes signals to 7 bits of resolution at sample rates up to 1.5 GSPS. Its features include a test pattern output for system debug, a clock phase adjust, and selectable output demultiplexer modes. This device is guaranteed to have no missing codes over the full operating temperature range. The unique folding and interpolating architecture, the fully differential comparator design, the innovative design of the internal sample-and-hold amplifier and the self-calibration scheme enable a very flat response of all dynamic parameters beyond Nyquist, producing a high 6.8 Effective Number of Bits (ENOB) with a 748 MHz input signal and a 1.5 GHz sample rate while providing a 10 -18 Code Error Rate (C.E.R.) Output formatting is offset binary and the Low Voltage Differential Signaling (LVDS) digital outputs are compatible with IEEE 1596.3-1996, with the exception of an adjustable common mode voltage between 0.8V and 1.2V.

Each converter has a selectable output demultiplexer which feeds two LVDS buses. If the 1:2 Demultiplexed Mode is selected, the output data rate is reduced to half the input sample rate on each bus. When Non-Demultiplexed Mode is selected, the output data rate on channels DI and DQ is at the same rate as the input sample clock. The two converters can be interleaved and used as a single 3 GSPS ADC.

The converter typically consumes less than 3.5 mW in the Power Down Mode and is available in a leaded or lead-free, 128-pin, thermally enhanced, exposed pad LQFP and operates over the Industrial (–40°C ≤ TA ≤ +85°C) temperature range.

Pricing

Qty Price
+

Carrier options

You can choose different carrier options based on the quantity of parts, including full reel, custom reel, cut tape, tube or tray.

A custom reel is a continuous length of cut tape from one reel to maintain lot- and date-code traceability, built to the exact quantity requested. Following industry standards, a brass shim connects an 18-inch leader and trailer on both sides of the cut tape for direct feeding into automated assembly machines. TI includes a reeling fee for custom reel orders.

Cut tape is a length of tape cut from a reel. TI may fulfill orders using multiple strips of cut tapes or boxes to satisfy the quantity requested.

TI often ships tube or tray devices inside a box or in the tube or tray, depending on inventory availability. We pack all tapes, tubes or sample boxes according to internal electrostatic discharge and moisture-sensitivity-level protection requirements.

Learn more

Lot and date code selection may be available

Add a quantity to your cart and begin the checkout process to view the options available to select lot or date codes from existing inventory.

Learn more