text.skipToContent text.skipToNavigation


1.8V 1-to-10 High Performance Differential Clock Buffer


Package | PIN: RGZ | 48
Temp: I (-40 to 85)
Carrier: Cut Tape
Qty Price
1-9 $13.07
10-24 $12.15
25-99 $11.72
100-249 $10.24
250-499 $9.75
500-749 $8.97
750-999 $8.05
1000+ $8.03


  • Single 1.8-V Supply
  • High-Performance Clock Distributor with
    10 Outputs
  • Low Input-to-Output Additive Jitter:
    as Low as 10fs RMS
  • Output Group Phase Adjustment
  • Low-Voltage Differential Signaling (LVDS)
    Input, 100-Ω Differential On-Chip
    Termination, up to 650 MHz Frequency
  • Differential Current Mode Logic (CML)
    Outputs, 50-Ω Single-Ended On-Chip
    Termination, up to 650 MHz Frequency
  • Two Groups of Five Outputs Each with
    Independent Frequency Division Ratios
  • Output Frequency Derived with Divide
    Ratios of 1, 2, 4, 5, 8, 10, 16, 20,
    32, 40, and 80
  • Meets ANSI TIA/EIA-644-A-2001 LVDS
    Standard Requirements
  • Power Consumption: 410 mW Typical
  • Output Enable Control for Each Output
    and Automatic Output Synchronization
  • SDA/SCL Device Management Interface
  • 48-pin VQFN (RGZ) Package
  • Industrial Temperature Range:
    –40°C to +85°C

Texas Instruments  CDCL1810RGZT

The CDCL1810 is a high-performance clock distributor. The programmable dividers, P0 and P1, give a high flexibility to the ratio of the output frequency to the input frequency: FOUT = FIN/P, where: P (P0,P1) = 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80.

The CDCL1810 supports one differential LVDS clock input and a total of 10 differential CML outputs. The CML outputs are compatible with LVDS receivers if they are ac-coupled.

With careful observation of the input voltage swing and common-mode voltage limits, the CDCL1810 can support a single-ended clock input as outlined in Pin Configuration and Functions.

All device settings are programmable through the SDA/SCL, serial two-wire interface. The serial interface is 1.8V tolerant only.

The phase of one output group relative to the other can be adjusted through the SDA/SCL interface. For post-divide ratios (P0, P1) that are multiples of 5, the total number of phase adjustment steps (η) equals the divide-ratio divided by 5. For post-divide ratios (P0, P1) that are not multiples of 5, the total number of steps (η) is the same as the post-divide ratio. The phase adjustment step (ΔΦ) in time units is given as: ΔΦ = 1/(n × FOUT), where FOUT is the respective output frequency.

The device operates in a 1.8-V supply environment and is characterized for operation from –40°C to +85°C. The CDCL1810 is available in a 48-pin VQFN (RGZ) package.