text.skipToContent text.skipToNavigation


±1.5°C Analog Output Temperature Sensor


Package | PIN: DCK | 5
Temp: S (-55 to 130)
Carrier: Cut Tape
Qty Price
1-9 $0.84
10-24 $0.75
25-99 $0.70
100-249 $0.60
250-499 $0.55
500-749 $0.45
750-999 $0.36
1000+ $0.32


  • Rated for −55°C to 130°C Range
  • Available in SC70 and DSBGA Package
  • Predictable Curvature Error
  • Suitable for Remote Applications
  • Accuracy at 30°C ±1.5 to ±4°C (Maximum)
  • Accuracy at 130°C and −55°C ±2.5 to ±5°C (Maximum)
  • Power Supply Voltage Range 2.4 V to 5.5 V
  • Current Drain 10 μA (Maximum)
  • Nonlinearity ±0.4% (Typical)
  • Output Impedance 160 Ω (Maximum)
  • Load Regulation
       0 μA < IL< 16 μA −2.5 mV (Maximum)

All trademarks are the property of their respective owners. All trademarks are the property of their respective owners.

Texas Instruments  LM20CIM7/NOPB

The LM20 is a precision analog output CMOS integrated-circuit temperature sensor that operates over −55°C to 130°C. The power supply operating range is 2.4 V to 5.5 V. The transfer function of LM20 is predominately linear, yet has a slight predictable parabolic curvature. The accuracy of the LM20 when specified to a parabolic transfer function is ±1.5°C at an ambient temperature of 30°C. The temperature error increases linearly and reaches a maximum of ±2.5°C at the temperature range extremes. The temperature range is affected by the power supply voltage. At a power supply voltage of 2.7 V to 5.5 V, the temperature range extremes are 130°C and −55°C. Decreasing the power supply voltage to 2.4 V changes the negative extreme to −30°C, while the positive extreme remains at 130°C.

The LM20 quiescent current is less than 10 μA. Therefore, self-heating is less than 0.02°C in still air. Shutdown capability for the LM20 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates or does not necessitate shutdown.