text.skipToContent text.skipToNavigation

LM2902KAVQPWREP

Enhanced Product Quadruple Operational Amplifier

Packaging

Package | PIN: PW | 14
Temp: Q (-40 to 125)
Carrier: Cut Tape
Qty Price
1-9 $0.96
10-24 $0.85
25-99 $0.79
100-249 $0.68
250-499 $0.62
500-749 $0.51
750-999 $0.41
1000+ $0.36

Features

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • ESD Protection <500 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model C = 200 pF, R = 0); 1500 V Using Charged Device Model
  • ESD Human Body Model >2 kV Machine Model >200 V and Charge Device Model = 2 kV For K-Suffix Devices.
  • Low Supply-Current Drain Independent of Supply Voltage . . . 0.8 mA Typ
  • Low Input Bias and Offset Parameters:
    • Input Offset Voltage . . . 3 mV Typ
    • Input Offset Current . . . 2 nA Typ
    • Input Bias Current . . . 20 nA Typ
  • Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground
  • Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage:
    • Non-V devices . . . 26 V
    • V-Suffix devices . . . 32 V
  • V-Suffix devices . . . 32 V DOpen-Loop Differential Voltage Amplification . . . 100 V/mV Typ
  • Internal Frequency Compensation

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

Texas Instruments  LM2902KAVQPWREP

This device consists of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is possible when the difference between the two supplies is 3 V to 26 V (3 V to 32 V for V-suffixed devices) and VCC is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational-amplifier circuits that now can be more easily implemented in single-supply voltage systems. For example, the LM2902 can be operated directly from the standard 5-V supply that is used in digital systems and easily provides the required interface electronics without requiring additional ±15-V supplies.