OPA835IDBVT

text.skipToContent text.skipToNavigation

OPA835IDBVT

Ultra Low Power, Rail to Rail Out, Negative Rail In, VFB Amplifier

Packaging

Package | PIN: DBV | 6
Temp: Q (-40 to 125)
Carrier: Cut Tape
Qty Price
1-9 $1.95
10-24 $1.76
25-99 $1.64
100-249 $1.43
250-499 $1.35
500-749 $1.14
750-999 $0.96
1000+ $0.92

Features

  • Ultra-Low Power
    • Supply Voltage: 2.5 V to 5.5 V
    • Quiescent Current: 250 µA/ch (Typical)
    • Power Down Mode: 0.5 µA (Typical)
  • Bandwidth: 56 MHz (AV = 1 V/V)
  • Slew Rate: 160 V/µs
  • Rise Time: 10 ns (2 VSTEP)
  • Settling Time (0.1%): 55 ns (2 VSTEP)
  • Overdrive Recovery Time: 200 ns
  • SNR: 0.00015% (–116.4 dBc) at 1 kHz (1 VRMS)
  • THD: 0.00003% (–130 dBc) at 1 kHz (1 VRMS)
  • HD2/HD3: –70 dBc/–73 dBc at 1 MHz (2 VPP)
  • Input Voltage Noise: 9.3 nV/√Hz (f = 100 kHz)
  • Input Offset Voltage: 100 µV (±500-µV Maximum)
  • CMRR: 113 dB
  • Output Current Drive: 40 mA
  • RRO: Rail-to-Rail Output
  • Input Voltage Range: –0.2 V to 3.9 V
    (5-V Supply)
  • Operating Temperature Range:
    –40°C to +125°C

Texas Instruments  OPA835IDBVT

The OPA835 and OPA2835 devices (OPAx835) are single and dual ultra-low-power, rail-to-rail output, negative-rail input, voltage-feedback (VFB) operational amplifiers designed to operate over a power supply range of 2.5-V to 5.5-V with a single supply, or ±1.25-V to ±2.75-V with a dual supply. Consuming only 250 µA per channel and with a unity gain bandwidth of 56 MHz, these amplifiers set an industry-leading performance-to-power ratio for rail-to-rail amplifiers.

For battery-powered, portable applications where power is of key importance, the low power consumption and high-frequency performance of the OPA835 and OPA2835 devices offers performance versus power that is not attainable in other devices. Coupled with a power-savings mode to reduce current to < 1.5 µA, these devices offer an attractive solution for high-frequency amplifiers in battery-powered applications.

The OPA835 RUN package option includes integrated gain-setting resistors for the smallest possible footprint on a printed-circuit-board (approximately 2.00 mm × 2.00 mm). By adding circuit traces on the PCB, gains of +1, –1, –1.33, +2, +2.33, –3, +4, –4, +5, –5.33, +6.33, –7, +8 and inverting attenuations of –0.1429, –0.1875, –0.25, –0.33, –0.75 can be achieved.

The OPA835 and OPA2835 devices are characterized for operation over the extended industrial temperature range of –40°C to +125°C.