SN65LVDM179DGK

text.skipToContent text.skipToNavigation

SN65LVDM179DGK

Full-Duplex LVDM Transceiver

Packaging

Package | PIN: DGK | 8
Temp: I (-40 to 85)
Carrier: Partial Tube
Qty Price
1-9 $3.69
10-24 $3.32
25-99 $3.09
100-249 $2.71
250-499 $2.54
500-749 $2.16
750-999 $1.82
1000+ $1.74

Features

  • Low-Voltage Differential 50- Line Drivers and Receivers
  • Typical Full-Duplex Signaling Rates of 100 Mbps
  • Bus-Terminal ESD Exceeds 12 kV
  • Operates From a Single 3.3-V Supply
  • Low-Voltage Differential Signaling With Typical
    Output Voltages of 340 mV With a 50- Load
  • Valid Output With as Little as 50-mV Input
    Voltage Difference
  • Propagation Delay Times
    • Driver: 1.7 ns Typical
    • Receiver: 3.7 ns Typical
  • Power Dissipation at 200 MHz
    • Driver: 50 mW Typical
    • Receiver: 60 mW Typical
  • LVTTL Input Levels Are 5-V Tolerant
  • Driver Is High Impedance When Disabled or With VCC < 1.5 V
  • Receiver Has Open-Circuit Failsafe

Texas Instruments  SN65LVDM179DGK

The SN65LVDM179, SN65LVDM180, SN65LVDM050, and SN65LVDM051 are differential line drivers and receivers that use low-voltage differential signaling (LVDS) to achieve high signaling rates. These circuits are similar to TIA/EIA-644 standard compliant devices (SN65LVDS) counterparts, except that the output current of the drivers is doubled. This modification provides a minimum differential output voltage magnitude of 247 mV across a 50- load simulating two transmission lines in parallel. This allows having data buses with more than one driver or with two line termination resistors. The receivers detect a voltage difference of 50 mV with up to 1 V of ground potential difference between a transmitter and receiver.

The intended application of these devices and signaling techniques is point-to-point half duplex, baseband data transmission over a controlled impedance media of approximately 100 characteristic impedance.

The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other application-specific characteristics.

The SN65LVDM179, SN65LVDM180, SN65LVDM050, and SN65LVDM051 are characterized for operation from –40°C to 85°C.