SN74ALVCHR16601LR

text.skipToContent text.skipToNavigation

SN74ALVCHR16601LR

18-Bit Universal Bus Transceiver With 3-State Outputs

Packaging

Package | PIN: DL | 56
Temp: I (-40 to 85)
Carrier: Cut Tape
Qty Price
1-9 $2.60
10-24 $2.33
25-99 $2.17
100-249 $1.89
250-499 $1.74
500-749 $1.46
750-999 $1.20
1000+ $1.10

Features

  • Member of the Texas Instruments Widebus™ Family
  • UBT™ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Modes
  • Operates From 1.65 V to 3.6 V
  • Max tpd of 4.4 ns at 3.3 V
  • ±12-mA Output Drive at 3.3 V
  • Output Ports Have Equivalent 26- Series Resistors, So No External Resistors Are Required
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Widebus, UBT are trademarks of Texas Instruments.

Texas Instruments  SN74ALVCHR16601LR

This 18-bit universal bus transceiver is designed for 1.65-V to 3.6-V VCC operation.

The SN74ALVCHR16601 combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, clocked, and clock-enabled modes.

Data flow in each direction is controlled by output-enable (OEAB\ and OEBA\), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB\ and CLKENBA\) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB\ is low, the outputs are active. When OEAB\ is high, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B, but uses OEBA\, LEBA, CLKBA, and CLKENBA\.

The outputs include equivalent 26- series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.