SN74CBT16244CDGGR

text.skipToContent text.skipToNavigation

SN74CBT16244CDGGR

16-Bit FET Bus Switch with -2 V Undershoot Protection

Packaging

Package | PIN: DGG | 48
Temp: I (-40 to 85)
Carrier: Cut Tape
Qty Price
1-9 $1.53
10-24 $1.37
25-99 $1.28
100-249 $1.11
250-499 $1.02
500-749 $0.86
750-999 $0.71
1000+ $0.65

Features

  • Member of the Texas Instruments Widebus™ Family
  • Undershoot Protection for Off-Isolation on A and B Ports Up to –2 V
  • Bidirectional Data Flow, With Near-Zero Propagation Delay
  • Low ON-State Resistance (ron)
  • Characteristics (ron = 3 Typical)
  • Low Input/Output Capacitance Minimizes Loading and Signal Distortion (Cio(OFF) = 5.5 pF Typical)
  • Data and Control Inputs Provide Undershoot Clamp Diodes
  • Low Power Consumption (ICC = 3 µA Max)
  • VCC Operating Range From 4 V to 5.5 V
  • Data I/Os Support 0 to 5-V Signaling Levels (0.8-V, 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, 5-V)
  • Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Performance Tested Per JESD 22
    • 2000-V Human-Body Model (A114-B, Class II)
    • 1000-V Charged-Device Model (C101)
  • Supports Both Digital and Analog Applications: PCI Interface, USB Interface, Memory Interleaving, Bus Isolation, Low-Distortion Signal Gating

Widebus is a trademark of Texas Instruments.

Texas Instruments  SN74CBT16244CDGGR

The SN74CBT16244C is a high-speed TTL-compatible FET bus switch with low ON-state resistance (ron), allowing for minimal propagation delay. Active Undershoot-Protection Circuitry on the A and B ports of the SN74CBT16244C provides protection for undershoot up to –2 V by sensing an undershoot event and ensuring that the switch remains in the proper OFF state.

The SN74CBT16244C is organized as four 4-bit bus switches with separate output-enable (1OE\, 2OE\, 3OE\, 4OE\) inputs. It can be used as four 4-bit bus switches, two 8-bit bus switches, or as one 16-bit bus switch. When OE\ is low, the associated 4-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE\ is high, the associated 4-bit bus switch is OFF, and the high-impedance state exists between the A and B ports.

This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.