SN74LVTH16543DGGR

text.skipToContent text.skipToNavigation

SN74LVTH16543DGGR

3.3-V ABT 16-Bit Registered Transceivers With 3-State Outputs

Packaging

Package | PIN: DGG | 56
Temp: I (-40 to 85)
Carrier: Cut Tape
Qty Price
1-9 $1.81
10-24 $1.62
25-99 $1.51
100-249 $1.31
250-499 $1.21
500-749 $1.02
750-999 $0.84
1000+ $0.77

Features

  • Members of the Texas Instruments WidebusTM Family
  • State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25°C
  • Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
  • Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

Widebus is a trademark of Texas Instruments Incorporated.

Texas Instruments  SN74LVTH16543DGGR

The 'LVTH16543 devices are 16-bit registered transceivers designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable (LEAB\ or LEBA\) and output-enable (OEAB\ or OEBA\) inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable (CEAB\) input must be low to enter data from A or to output data from B. If CEAB\ is low and LEAB\ is low, the A-to-B latches are transparent; a subsequent low-to-high transition of LEAB\ puts the A latches in the storage mode. With CEAB\ and OEAB\ both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the CEBA\, LEBA\, and OEBA\ inputs.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The SN54LVTH16543 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH16543 is characterized for operation from -40°C to 85°C.