SN74LVTH241PWR

text.skipToContent text.skipToNavigation

SN74LVTH241PWR

3.3-V ABT Octal Buffers/Drivers With 3-State Outputs

Packaging

Package | PIN: PW | 20
Temp: I (-40 to 85)
Carrier: Cut Tape
Qty Price
1-9 $0.68
10-24 $0.61
25-99 $0.56
100-249 $0.48
250-499 $0.45
500-749 $0.36
750-999 $0.29
1000+ $0.26

Features

  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Texas Instruments  SN74LVTH241PWR

These octal buffers/drivers are designed specifically for low-voltage (3.3-V) VCC operation, with the capability to provide a TTL interface to a 5-V system environment.

The ’LVTH241 devices are organized as two 4-bit line drivers with separate output-enable (1OE\, 2OE) inputs. When 1OE\ is low or 2OE is high, the devices pass noninverted data from the A inputs to the Y outputs. When 1OE\ is high or 2OE is low, the outputs are in the high-impedance state.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE\ should be tied to VCC through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.