

### Features

- Synchronous or Asynchronous Preset
- Cascadable in Synchronous or Ripple Mode
- Fanout (Over Temperature Range)
  - Standard Outputs ..... 10 LSTTL Loads
  - Bus Driver Outputs ..... 15 LSTTL Loads
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
  - 2V to 6V Operation
  - High Noise Immunity:  $N_{IL} = 30\%$ ,  $N_{IH} = 30\%$  of  $V_{CC}$  at  $V_{CC} = 5V$
- HCT Types
  - 4.5V to 5.5V Operation
  - Direct LSTTL Input Logic Compatibility,  $V_{IL} = 0.8V$  (Max),  $V_{IH} = 2V$  (Min)
  - CMOS Input Compatibility,  $I_L \leq 1\mu A$  at  $V_{OL}, V_{OH}$

### Ordering Information

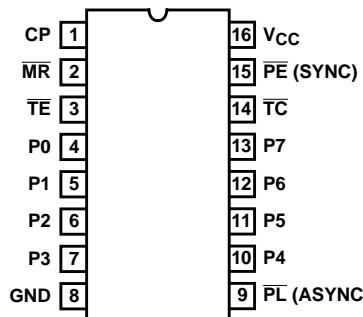
| PART NUMBER     | TEMP. RANGE<br>(°C) | PACKAGE      |
|-----------------|---------------------|--------------|
| CD54HC40103F3A  | -55 to 125          | 16 Ld CERDIP |
| CD74HC40103E    | -55 to 125          | 16 Ld PDIP   |
| CD74HC40103M    | -55 to 125          | 16 Ld SOIC   |
| CD74HC40103MT   | -55 to 125          | 16 Ld SOIC   |
| CD74HC40103M96  | -55 to 125          | 16 Ld SOIC   |
| CD74HCT40103E   | -55 to 125          | 16 Ld PDIP   |
| CD74HCT40103M   | -55 to 125          | 16 Ld SOIC   |
| CD74HCT40103MT  | -55 to 125          | 16 Ld SOIC   |
| CD74HCT40103M96 | -55 to 125          | 16 Ld SOIC   |

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

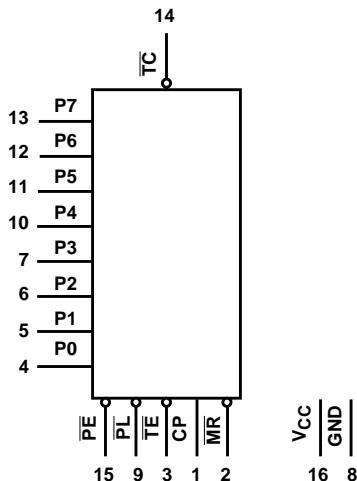
### Description

The 'HC40103 and CD74HCT40103 are manufactured with high speed silicon gate technology and consist of an 8-stage synchronous down counter with a single output which is active when the internal count is zero. The 40103 contains a single 8-bit binary counter. Each has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the  $\overline{TC}$  output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK (CP). Counting is inhibited when the  $\overline{TE}$  input is high. The  $\overline{TC}$  output goes low when the count reaches zero if the  $\overline{TE}$  input is low, and remains low for one full clock period.


When the  $\overline{PE}$  input is low, data at the P0-P7 inputs are clocked into the counter on the next positive clock transition regardless of the state of the  $\overline{TE}$  input. When the  $\overline{PL}$  input is low, data at the P0-P7 inputs are asynchronously forced into the counter regardless of the state of the  $\overline{PE}$ ,  $\overline{TE}$ , or CLOCK inputs. Input P0-P7 represent a single 8-bit binary word for the 40103. When the MR input is low, the counter is asynchronously cleared to its maximum count of 255<sub>10</sub>, regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except  $\overline{TE}$  are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100<sub>16</sub> or 256<sub>10</sub> clock pulses long.


The 40103 may be cascaded using the  $\overline{TE}$  input and the  $\overline{TC}$  output, in either a synchronous or ripple mode. These circuits possess the low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits and can drive up to 10 LSTTL loads.

**Pinout**

**CD54HC40103  
(CERDIP)  
CD74HC40103, CD74HCT40103  
(PDIP, SOIC)  
TOP VIEW**



**Functional Diagram**



**TRUTH TABLE**

| CONTROL INPUTS |    |    |    | PRESET MODE    | ACTION                                   |
|----------------|----|----|----|----------------|------------------------------------------|
| MR             | PL | PE | TE |                |                                          |
| 1              | 1  | 1  | 1  | Synchronous    | Inhibit Counter                          |
| 1              | 1  | 1  | 0  |                | Count Down                               |
| 1              | 1  | 0  | X  |                | Preset On Next Positive Clock Transition |
| 1              | 0  | X  | X  | Asynchronously | Preset Asynchronously                    |
| 0              | X  | X  | X  |                | Clear to Maximum Count                   |

1 = High Level.

0 = Low Level.

X = Don't Care.

Clock connected to clock input.

Synchronous Operation: changes occur on negative-to-positive clock transitions.

Load Inputs: MSB = P7, LSB = P0.

### Absolute Maximum Ratings

|                                                                                                      |       |             |
|------------------------------------------------------------------------------------------------------|-------|-------------|
| DC Supply Voltage, $V_{CC}$                                                                          | ..... | -0.5V to 7V |
| DC Input Diode Current, $I_{IK}$<br>For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$                       | ..... | $\pm 20mA$  |
| DC Output Diode Current, $I_{OK}$<br>For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$                      | ..... | $\pm 20mA$  |
| DC Output Source or Sink Current per Output Pin, $I_O$<br>For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$ | ..... | $\pm 25mA$  |
| DC $V_{CC}$ or Ground Current, $I_{CC}$                                                              | ..... | $\pm 50mA$  |

### Thermal Information

|                                          |                                    |
|------------------------------------------|------------------------------------|
| Thermal Resistance (Typical, Note 1)     | $\theta_{JA}$ ( $^{\circ}C/W$ )    |
| E (PDIP) Package                         | 67                                 |
| M (SOIC) Package                         | 73                                 |
| Maximum Junction Temperature             | 150 $^{\circ}C$                    |
| Maximum Storage Temperature Range        | -65 $^{\circ}C$ to 150 $^{\circ}C$ |
| Maximum Lead Temperature (Soldering 10s) | 300 $^{\circ}C$                    |
| (SOIC - Lead Tips Only)                  |                                    |

### Operating Conditions

|                                        |       |                                    |
|----------------------------------------|-------|------------------------------------|
| Temperature Range, $T_A$               | ..... | -55 $^{\circ}C$ to 125 $^{\circ}C$ |
| Supply Voltage Range, $V_{CC}$         | ..... |                                    |
| HC Types                               | ..... | 2V to 6V                           |
| HCT Types                              | ..... | 4.5V to 5.5V                       |
| DC Input or Output Voltage, $V_I, V_O$ | ..... | 0V to $V_{CC}$                     |
| Input Rise and Fall Time               | ..... |                                    |
| 2V                                     | ..... | 1000ns (Max)                       |
| 4.5V                                   | ..... | 500ns (Max)                        |
| 6V                                     | ..... | 400ns (Max)                        |

**CAUTION:** Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

**NOTE:**

1. The package thermal impedance is calculated in accordance with JESD 51-7.

### DC Electrical Specifications

| PARAMETER                            | SYMBOL   | TEST CONDITIONS      |            | $V_{CC}$<br>(V) | 25 $^{\circ}C$ |     |           | -40 $^{\circ}C$ TO 85 $^{\circ}C$ |         | -55 $^{\circ}C$ TO 125 $^{\circ}C$ |         | UNITS   |  |  |
|--------------------------------------|----------|----------------------|------------|-----------------|----------------|-----|-----------|-----------------------------------|---------|------------------------------------|---------|---------|--|--|
|                                      |          | $V_I$ (V)            | $I_O$ (mA) |                 | MIN            | TYP | MAX       | MIN                               | MAX     | MIN                                | MAX     |         |  |  |
| <b>HC TYPES</b>                      |          |                      |            |                 |                |     |           |                                   |         |                                    |         |         |  |  |
| High Level Input Voltage             | $V_{IH}$ | -                    | -          | 2               | 1.5            | -   | -         | 1.5                               | -       | 1.5                                | -       | V       |  |  |
|                                      |          |                      |            | 4.5             | 3.15           | -   | -         | 3.15                              | -       | 3.15                               | -       | V       |  |  |
|                                      |          |                      |            | 6               | 4.2            | -   | -         | 4.2                               | -       | 4.2                                | -       | V       |  |  |
| Low Level Input Voltage              | $V_{IL}$ | -                    | -          | 2               | -              | -   | 0.5       | -                                 | 0.5     | -                                  | 0.5     | V       |  |  |
|                                      |          |                      |            | 4.5             | -              | -   | 1.35      | -                                 | 1.35    | -                                  | 1.35    | V       |  |  |
|                                      |          |                      |            | 6               | -              | -   | 1.8       | -                                 | 1.8     | -                                  | 1.8     | V       |  |  |
| High Level Output Voltage CMOS Loads | $V_{OH}$ | $V_{IH}$ or $V_{IL}$ | -0.02      | 2               | 1.9            | -   | -         | 1.9                               | -       | 1.9                                | -       | V       |  |  |
|                                      |          |                      | -0.02      | 4.5             | 4.4            | -   | -         | 4.4                               | -       | 4.4                                | -       | V       |  |  |
|                                      |          |                      | -0.02      | 6               | 5.9            | -   | -         | 5.9                               | -       | 5.9                                | -       | V       |  |  |
| High Level Output Voltage TTL Loads  |          |                      | -          | -               | -              | -   | -         | -                                 | -       | -                                  | -       | V       |  |  |
|                                      |          |                      | -4         | 4.5             | 3.98           | -   | -         | 3.84                              | -       | 3.7                                | -       | V       |  |  |
|                                      |          |                      | -5.2       | 6               | 5.48           | -   | -         | 5.34                              | -       | 5.2                                | -       | V       |  |  |
| Low Level Output Voltage CMOS Loads  | $V_{OL}$ | $V_{IH}$ or $V_{IL}$ | 0.02       | 2               | -              | -   | 0.1       | -                                 | 0.1     | -                                  | 0.1     | V       |  |  |
|                                      |          |                      | 0.02       | 4.5             | -              | -   | 0.1       | -                                 | 0.1     | -                                  | 0.1     | V       |  |  |
|                                      |          |                      | 0.02       | 6               | -              | -   | 0.1       | -                                 | 0.1     | -                                  | 0.1     | V       |  |  |
| Low Level Output Voltage TTL Loads   |          |                      | -          | -               | -              | -   | -         | -                                 | -       | -                                  | -       | V       |  |  |
|                                      |          |                      | 4          | 4.5             | -              | -   | 0.26      | -                                 | 0.33    | -                                  | 0.4     | V       |  |  |
|                                      |          |                      | 5.2        | 6               | -              | -   | 0.26      | -                                 | 0.33    | -                                  | 0.4     | V       |  |  |
| Input Leakage Current                | $I_I$    | $V_{CC}$ or GND      | -          | 6               | -              | -   | $\pm 0.1$ | -                                 | $\pm 1$ | -                                  | $\pm 1$ | $\mu A$ |  |  |
| Quiescent Device Current             | $I_{CC}$ | $V_{CC}$ or GND      | 0          | 6               | -              | -   | 8         | -                                 | 80      | -                                  | 160     | $\mu A$ |  |  |

# CD54HC40103, CD74HC40103, CD74HCT40103

## DC Electrical Specifications (Continued)

| PARAMETER                                                      | SYMBOL                    | TEST CONDITIONS                    |                     | V <sub>CC</sub> (V) | 25°C |     |      | -40°C TO 85°C |      | -55°C TO 125°C |     | UNITS |
|----------------------------------------------------------------|---------------------------|------------------------------------|---------------------|---------------------|------|-----|------|---------------|------|----------------|-----|-------|
|                                                                |                           | V <sub>I</sub> (V)                 | I <sub>O</sub> (mA) |                     | MIN  | TYP | MAX  | MIN           | MAX  | MIN            | MAX |       |
| <b>HCT TYPES</b>                                               |                           |                                    |                     |                     |      |     |      |               |      |                |     |       |
| High Level Input Voltage                                       | V <sub>IH</sub>           | -                                  | -                   | 4.5 to 5.5          | 2    | -   | -    | 2             | -    | 2              | -   | V     |
| Low Level Input Voltage                                        | V <sub>IL</sub>           | -                                  | -                   | 4.5 to 5.5          | -    | -   | 0.8  | -             | 0.8  | -              | 0.8 | V     |
| High Level Output Voltage CMOS Loads                           | V <sub>OH</sub>           | V <sub>IH</sub> or V <sub>IL</sub> | -0.02               | 4.5                 | 4.4  | -   | -    | 4.4           | -    | 4.4            | -   | V     |
| High Level Output Voltage TTL Loads                            |                           |                                    | -4                  | 4.5                 | 3.98 | -   | -    | 3.84          | -    | 3.7            | -   | V     |
| Low Level Output Voltage CMOS Loads                            | V <sub>OL</sub>           | V <sub>IH</sub> or V <sub>IL</sub> | 0.02                | 4.5                 | -    | -   | 0.1  | -             | 0.1  | -              | 0.1 | V     |
| Low Level Output Voltage TTL Loads                             |                           |                                    | 4                   | 4.5                 | -    | -   | 0.26 | -             | 0.33 | -              | 0.4 | V     |
| Input Leakage Current                                          | I <sub>I</sub>            | V <sub>CC</sub> and GND            | 0                   | 5.5                 | -    | -   | ±0.1 | -             | ±1   | -              | ±1  | µA    |
| Quiescent Device Current                                       | I <sub>CC</sub>           | V <sub>CC</sub> or GND             | 0                   | 5.5                 | -    | -   | 8    | -             | 80   | -              | 160 | µA    |
| Additional Quiescent Device Current Per Input Pin: 1 Unit Load | ΔI <sub>CC</sub> (Note 2) | V <sub>CC</sub> -2.1               | -                   | 4.5 to 5.5          | -    | 100 | 360  | -             | 450  | -              | 490 | µA    |

NOTE:

2. For dual-supply systems theoretical worst case (V<sub>I</sub> = 2.4V, V<sub>CC</sub> = 5.5V) specification is 1.8mA.

## HCT Input Loading Table

| INPUT  | UNIT LOADS (NOTE) |
|--------|-------------------|
| P0-P7  | 0.20              |
| TE, MR | 0.40              |
| CP     | 0.60              |
| PE     | 0.80              |
| PL     | 1.35              |

NOTE: Unit Load is ΔI<sub>CC</sub> limit specified in DC Electrical Table, e.g., 360µA max at 25°C.

## Prerequisite for Switching Specifications

| PARAMETER       | SYMBOL         | V <sub>CC</sub> (V) | 25°C |     |     | -40°C TO 85°C |     | -55°C TO 125°C |     | UNITS |
|-----------------|----------------|---------------------|------|-----|-----|---------------|-----|----------------|-----|-------|
|                 |                |                     | MIN  | TYP | MAX | MIN           | MAX | MIN            | MAX |       |
| <b>HC TYPES</b> |                |                     |      |     |     |               |     |                |     |       |
| CP Pulse Width  | t <sub>W</sub> | 2                   | 165  | -   | -   | 205           | -   | 250            | -   | ns    |
|                 |                | 4.5                 | 33   | -   | -   | 41            | -   | 50             | -   | ns    |
|                 |                | 6                   | 28   | -   | -   | 35            | -   | 43             | -   | ns    |
| PL Pulse Width  | t <sub>W</sub> | 2                   | 125  | -   | -   | 155           | -   | 190            | -   | ns    |
|                 |                | 4.5                 | 25   | -   | -   | 31            | -   | 38             | -   | ns    |
|                 |                | 6                   | 21   | -   | -   | 26            | -   | 32             | -   | ns    |

# CD54HC40103, CD74HC40103, CD74HCT40103

## Prerequisite for Switching Specifications (Continued)

| PARAMETER                  | SYMBOL               | V <sub>CC</sub> (V) | 25°C |     |     | -40°C TO 85°C |     | -55°C TO 125°C |     | UNITS |
|----------------------------|----------------------|---------------------|------|-----|-----|---------------|-----|----------------|-----|-------|
|                            |                      |                     | MIN  | TYP | MAX | MIN           | MAX | MIN            | MAX |       |
| MR Pulse Width             | t <sub>W</sub>       | 2                   | 125  | -   | -   | 135           | -   | 190            | -   | ns    |
|                            |                      | 4.5                 | 25   | -   | -   | 31            | -   | 38             | -   | ns    |
|                            |                      | 6                   | 21   | -   | -   | 26            | -   | 32             | -   | ns    |
| CP Max. Frequency (Note 3) | f <sub>CP(MAX)</sub> | 2                   | 3    | -   | -   | 2             | -   | 2              | -   | MHz   |
|                            |                      | 4.5                 | 15   | -   | -   | 12            | -   | 10             | -   | MHz   |
|                            |                      | 6                   | 18   | -   | -   | 14            | -   | 12             | -   | MHz   |
| P to CP Set-up Time        | t <sub>SU</sub>      | 2                   | 100  | -   | -   | 125           | -   | 150            | -   | ns    |
|                            |                      | 4.5                 | 20   | -   | -   | 25            | -   | 30             | -   | ns    |
|                            |                      | 6                   | 17   | -   | -   | 21            | -   | 26             | -   | ns    |
| P̄E to CP Set-up Time      | t <sub>SU</sub>      | 2                   | 75   | -   | -   | 95            | -   | 110            | -   | ns    |
|                            |                      | 4.5                 | 15   | -   | -   | 19            | -   | 22             | -   | ns    |
|                            |                      | 6                   | 13   | -   | -   | 16            | -   | 19             | -   | ns    |
| T̄E to CP Set-up Time      | t <sub>SU</sub>      | 2                   | 150  | -   | -   | 190           | -   | 225            | -   | ns    |
|                            |                      | 4.5                 | 30   | -   | -   | 38            | -   | 45             | -   | ns    |
|                            |                      | 6                   | 26   | -   | -   | 33            | -   | 38             | -   | ns    |
| P to CP Hold Time          | t <sub>H</sub>       | 2                   | 5    | -   | -   | 5             | -   | 5              | -   | ns    |
|                            |                      | 4.5                 | 5    | -   | -   | 5             | -   | 5              | -   | ns    |
|                            |                      | 6                   | 5    | -   | -   | 5             | -   | 5              | -   | ns    |
| T̄E to CP̄ Hold Time       | t <sub>H</sub>       | 2                   | 0    | -   | -   | 0             | -   | 0              | -   | ns    |
|                            |                      | 4.5                 | 0    | -   | -   | 0             | -   | 0              | -   | ns    |
|                            |                      | 6                   | 0    | -   | -   | 0             | -   | 0              | -   | ns    |
| MR to CP Removal Time      | t <sub>REM</sub>     | 2                   | 50   | -   | -   | 65            | -   | 75             | -   | ns    |
|                            |                      | 4.5                 | 10   | -   | -   | 13            | -   | 15             | -   | ns    |
|                            |                      | 6                   | 9    | -   | -   | 11            | -   | 13             | -   | ns    |
| P̄E to CP̄ Hold Time       | t <sub>H</sub>       | 2                   | 2    | -   | -   | 2             | -   | 2              | -   | ns    |
|                            |                      | 4.5                 | 2    | -   | -   | 2             | -   | 2              | -   | ns    |
|                            |                      | 6                   | 2    | -   | -   | 2             | -   | 2              | -   | ns    |
| <b>HCT TYPES</b>           |                      |                     |      |     |     |               |     |                |     |       |
| CP Pulse Width             | t <sub>W</sub>       | 4.5                 | 35   | -   | -   | 44            | -   | 53             | -   | ns    |
| PL Pulse Width             | t <sub>W</sub>       | 4.5                 | 43   | -   | -   | 54            | -   | 65             | -   | ns    |
| MR Pulse Width             | t <sub>W</sub>       | 4.5                 | 35   | -   | -   | 44            | -   | 53             | -   | ns    |
| CP Max. Frequency (Note 3) | f <sub>CP(MAX)</sub> | 4.5                 | 14   | -   | -   | 11            | -   | 9              | -   | MHz   |
| P to CP Set-up Time        | t <sub>SU</sub>      | 4.5                 | 24   | -   | -   | 30            | -   | 36             | -   | ns    |
| P̄E to CP Set-up Time      | t <sub>SU</sub>      | 4.5                 | 20   | -   | -   | 25            | -   | 30             | -   | ns    |
| T̄E to CP Set-up Time      | t <sub>SU</sub>      | 4.5                 | 40   | -   | -   | 50            | -   | 60             | -   | ns    |
| P to CP Hold Time          | t <sub>H</sub>       | 4.5                 | 5    | -   | -   | 5             | -   | 5              | -   | ns    |
| T̄E to CP Hold Time        | t <sub>H</sub>       | 4.5                 | 0    | -   | -   | 0             | -   | 0              | -   | ns    |
| MR to CP̄ Removal Time     | t <sub>REM</sub>     | 4.5                 | 10   | -   | -   | 13            | -   | 15             | -   | ns    |
| P̄E to CP Hold Time        | t <sub>H</sub>       | 4.5                 | 2    | -   | -   | 2             | -   | 2              | -   | ns    |

# CD54HC40103, CD74HC40103, CD74HCT40103

## Switching Specifications Input $t_r, t_f = 6\text{ns}$

| PARAMETER                                                            | SYMBOL                                 | TEST CONDITIONS       | V <sub>CC</sub> (V) | 25°C |     |     | -40°C TO 85°C |     | -55°C TO 125°C |     | UNITS |
|----------------------------------------------------------------------|----------------------------------------|-----------------------|---------------------|------|-----|-----|---------------|-----|----------------|-----|-------|
|                                                                      |                                        |                       |                     | MIN  | TYP | MAX | MIN           | MAX | MIN            | MAX |       |
| <b>HC TYPES</b>                                                      |                                        |                       |                     |      |     |     |               |     |                |     |       |
| Propagation Delay<br>CP to any $\overline{\text{TC}}$ (Async Preset) | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 2                   | -    | -   | 300 | -             | 375 | -              | 450 | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 60  | -             | 75  | -              | 90  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 25  | -   | -             | -   | -              | -   | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 6                   | -    | -   | 51  | -             | 64  | -              | 77  | ns    |
| CP to $\overline{\text{TC}}$ (Sync Preset)                           | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 2                   | -    | -   | 300 | -             | 375 | -              | 450 | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 60  | -             | 75  | -              | 90  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 25  | -   | -             | -   | -              | -   | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 6                   | -    | -   | 51  | -             | 64  | -              | 77  | ns    |
| $\overline{\text{TE}}$ to $\overline{\text{TC}}$                     | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 2                   | -    | -   | 200 | -             | 250 | -              | 300 | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 40  | -             | 50  | -              | 60  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 17  | -   | -             | -   | -              | -   | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 6                   | -    | -   | 34  | -             | 43  | -              | 51  | ns    |
| PL to $\overline{\text{TC}}$                                         | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 2                   | -    | -   | 275 | -             | 345 | -              | 415 | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 55  | -             | 69  | -              | 83  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 23  | -   | -             | -   | -              | -   | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 6                   | -    | -   | 47  | -             | 59  | -              | 71  | ns    |
| MR to $\overline{\text{TC}}$                                         | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 2                   | -    | -   | 275 | -             | 345 | -              | 415 | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 55  | -             | 69  | -              | 83  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 23  | -   | -             | -   | -              | -   | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 6                   | -    | -   | 47  | -             | 59  | -              | 71  | ns    |
| Output Transition Time                                               | t <sub>TLH</sub> , t <sub>THL</sub>    | C <sub>L</sub> = 50pF | 2                   | -    | -   | 75  | -             | 95  | -              | 110 | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 15  | -             | 19  | -              | 22  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 50pF | 6                   | -    | -   | 13  | -             | 16  | -              | 19  | ns    |
| Input Capacitance                                                    | C <sub>I</sub>                         | C <sub>L</sub> = 50pF | -                   | -    | -   | 10  | -             | 10  | -              | 10  | pF    |
| CP Maximum Frequency                                                 | f <sub>MAX</sub>                       | C <sub>L</sub> = 15pF | 5                   | -    | 25  | -   | -             | -   | -              | -   | MHz   |
| Power Dissipation Capacitance<br>(Notes 4, 5)                        | C <sub>PD</sub>                        | -                     | 5                   | -    | 25  | -   | -             | -   | -              | -   | pF    |
| <b>HCT TYPES</b>                                                     |                                        |                       |                     |      |     |     |               |     |                |     |       |
| Propagation Delay<br>CP to $\overline{\text{TC}}$ (Async Preset)     | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 60  | -             | 75  | -              | 90  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 25  | -   | -             | -   | -              | -   | ns    |
| $\overline{\text{CE}}$ to $\overline{\text{TC}}$ (Sync Preset)       | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 63  | -             | 79  | -              | 95  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 26  | -   | -             | -   | -              | -   | ns    |
| $\overline{\text{TE}}$ to $\overline{\text{TC}}$                     | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 50  | -             | 63  | -              | 75  | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 21  | -   | -             | -   | -              | -   | ns    |
| PL to $\overline{\text{TC}}$                                         | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 68  | -             | 85  | -              | 102 | ns    |
|                                                                      |                                        | C <sub>L</sub> = 15pF | 5                   | -    | 28  | -   | -             | -   | -              | -   | ns    |

**Switching Specifications** Input  $t_r, t_f = 6\text{ns}$  (Continued)

| PARAMETER                                  | SYMBOL                              | TEST CONDITIONS       | V <sub>CC</sub> (V) | 25°C |     |     | -40°C TO 85°C |     | -55°C TO 125°C |     | UNITS |
|--------------------------------------------|-------------------------------------|-----------------------|---------------------|------|-----|-----|---------------|-----|----------------|-----|-------|
|                                            |                                     |                       |                     | MIN  | TYP | MAX | MIN           | MAX | MIN            | MAX |       |
| MR to $\overline{\text{TC}}$               | t <sub>PLH</sub> , t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 55  | -             | 69  | -              | 83  | ns    |
|                                            |                                     | C <sub>L</sub> = 15pF | 5                   | -    | 23  | -   | -             | -   | -              | -   | ns    |
| Output Transition Time                     | t <sub>THL</sub> , t <sub>TLH</sub> | C <sub>L</sub> = 50pF | 4.5                 | -    | -   | 15  | -             | 19  | -              | 22  | ns    |
| Input Capacitance                          | C <sub>IN</sub>                     | C <sub>L</sub> = 50pF | -                   | -    | -   | 10  | -             | 10  | -              | 10  | pF    |
| CP Maximum Frequency                       | f <sub>MAX</sub>                    | C <sub>L</sub> = 15pF | 5                   | -    | 25  | -   | -             | -   | -              | -   | MHz   |
| Power Dissipation Capacitance (Notes 4, 5) | C <sub>PD</sub>                     | -                     | 5                   | -    | 27  | -   | -             | -   | -              | -   | pF    |

NOTES:

3. Noncascaded operation only. With cascaded counters clock-to-terminal count propagation delays, count enables ( $\overline{\text{PE}}$  or  $\overline{\text{TE}}$ )-to-clock SET UP TIMES, and count enables ( $\overline{\text{PE}}$  or  $\overline{\text{TE}}$ )-to-clock HOLD TIMES determine maximum clock frequency. For example, with these HC devices:

$$C_P f_{MAX} = \frac{1}{\text{CP-to-}\overline{\text{TC}} \text{ prop delay} + \overline{\text{TE}}\text{-to-CP Setup Time} + \overline{\text{TE}}\text{-to-CP Hold Time}} = \frac{1}{60 + 30 + 0} \approx 11\text{MHz}$$

4. C<sub>PD</sub> is used to determine the dynamic power consumption, per package.

5. P<sub>D</sub> = V<sub>CC</sub><sup>2</sup> f<sub>i</sub> + C<sub>L</sub> V<sub>CC</sub><sup>2</sup> f<sub>o</sub> where f<sub>i</sub> = Input Frequency, C<sub>L</sub> = Output Load Capacitance, V<sub>CC</sub> = Supply Voltage, f<sub>o</sub> = Output Frequency.

**Timing Diagrams**

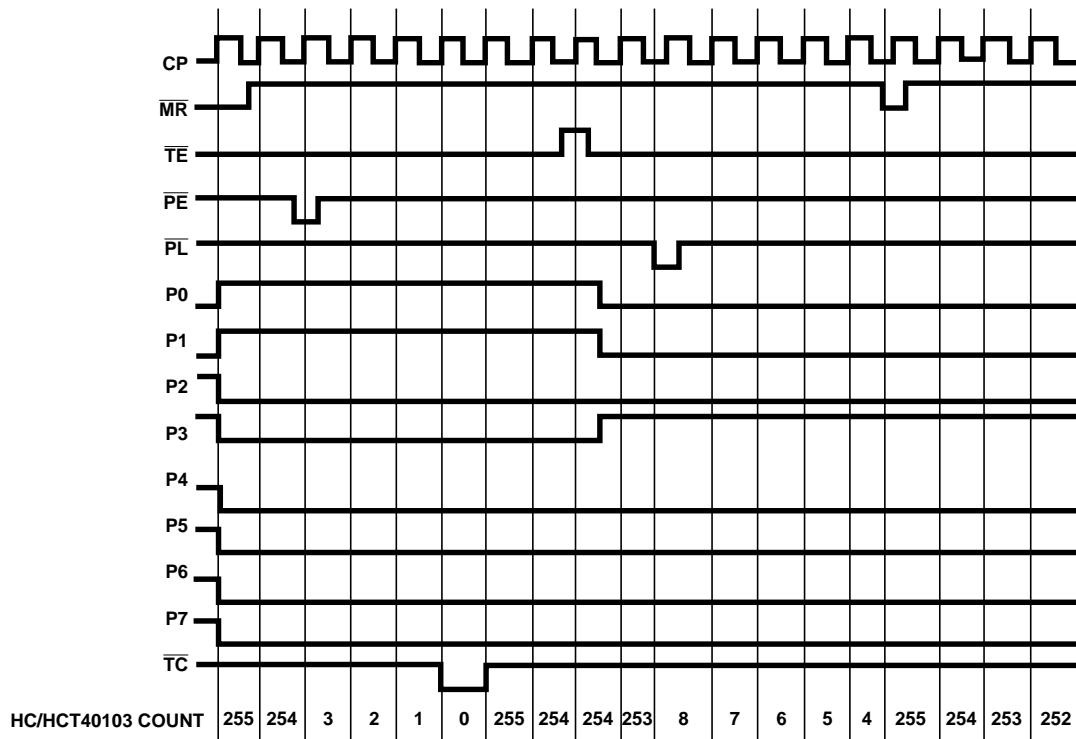



FIGURE 1.

### Test Circuits and Waveforms

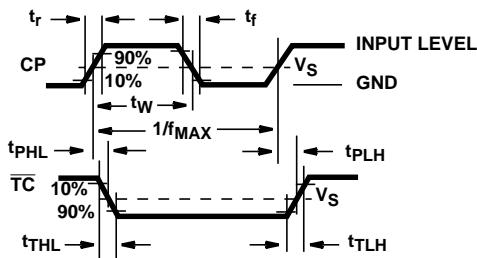



FIGURE 2.

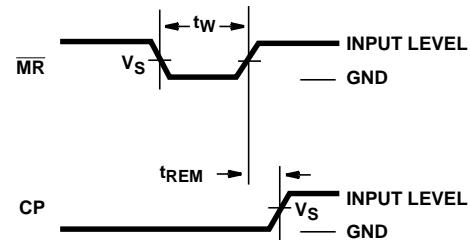



FIGURE 3.

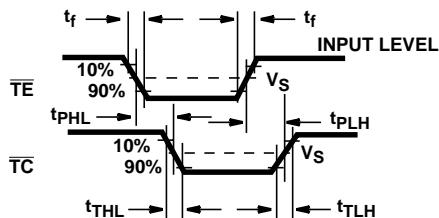



FIGURE 4.

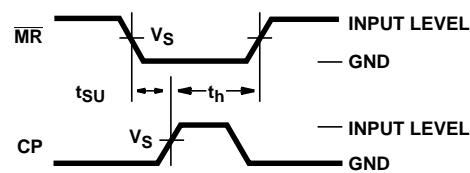



FIGURE 5.

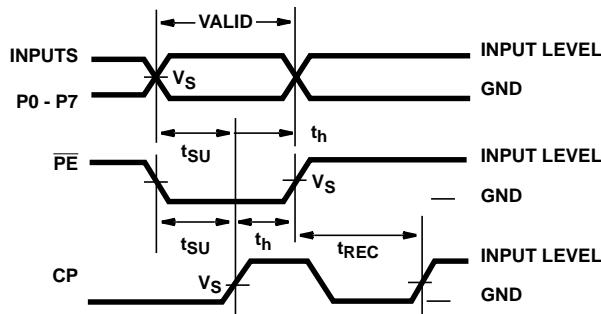



FIGURE 6.

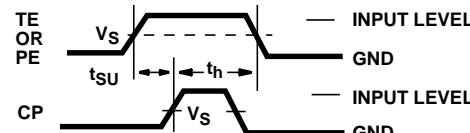
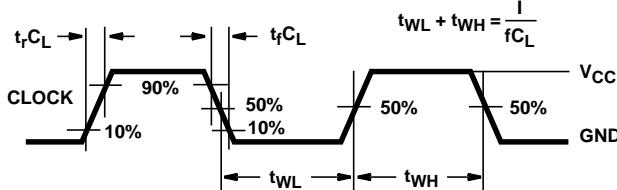
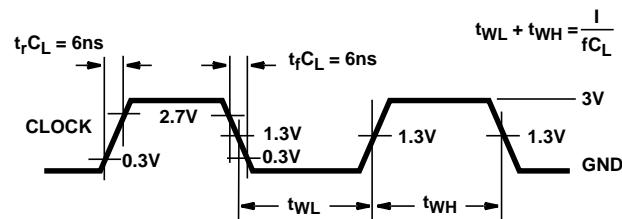





FIGURE 7.



NOTE: Outputs should be switching from 10%  $V_{CC}$  to 90%  $V_{CC}$  in accordance with device truth table. For  $f_{MAX}$ , input duty cycle = 50%.

FIGURE 8. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH



NOTE: Outputs should be switching from 10%  $V_{CC}$  to 90%  $V_{CC}$  in accordance with device truth table. For  $f_{MAX}$ , input duty cycle = 50%.

FIGURE 9. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

**PACKAGING INFORMATION**

| Orderable part number | Status<br>(1) | Material type<br>(2) | Package   Pins | Package qty   Carrier | RoHS<br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6)              |
|-----------------------|---------------|----------------------|----------------|-----------------------|-------------|--------------------------------------|-----------------------------------|--------------|----------------------------------|
| 5962-9055301EA        | Active        | Production           | CDIP (J)   16  | 25   TUBE             | No          | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9055301EA<br>CD54HC40103F3A |
| CD54HC40103F          | Active        | Production           | CDIP (J)   16  | 25   TUBE             | No          | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | CD54HC40103F                     |
| CD54HC40103F.A        | Active        | Production           | CDIP (J)   16  | 25   TUBE             | No          | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | CD54HC40103F                     |
| CD54HC40103F3A        | Active        | Production           | CDIP (J)   16  | 25   TUBE             | No          | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9055301EA<br>CD54HC40103F3A |
| CD54HC40103F3A.A      | Active        | Production           | CDIP (J)   16  | 25   TUBE             | No          | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9055301EA<br>CD54HC40103F3A |
| CD74HC40103E          | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -55 to 125   | CD74HC40103E                     |
| CD74HC40103E.A        | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -55 to 125   | CD74HC40103E                     |
| CD74HC40103EE4        | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -55 to 125   | CD74HC40103E                     |
| CD74HC40103M          | Obsolete      | Production           | SOIC (D)   16  | -                     | -           | Call TI                              | Call TI                           | -55 to 125   | HC40103M                         |
| CD74HC40103M96        | Active        | Production           | SOIC (D)   16  | 2500   LARGE T&R      | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -55 to 125   | HC40103M                         |
| CD74HC40103M96.A      | Active        | Production           | SOIC (D)   16  | 2500   LARGE T&R      | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -55 to 125   | HC40103M                         |
| CD74HC40103MT         | Obsolete      | Production           | SOIC (D)   16  | -                     | -           | Call TI                              | Call TI                           | -55 to 125   | HC40103M                         |
| CD74HCT40103E         | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -55 to 125   | CD74HCT40103E                    |
| CD74HCT40103E.A       | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -55 to 125   | CD74HCT40103E                    |
| CD74HCT40103M         | Obsolete      | Production           | SOIC (D)   16  | -                     | -           | Call TI                              | Call TI                           | -55 to 125   | HCT40103M                        |
| CD74HCT40103M96       | Active        | Production           | SOIC (D)   16  | 2500   LARGE T&R      | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -55 to 125   | HCT40103M                        |
| CD74HCT40103M96.A     | Active        | Production           | SOIC (D)   16  | 2500   LARGE T&R      | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -55 to 125   | HCT40103M                        |

<sup>(1)</sup> **Status:** For more details on status, see our [product life cycle](#).

<sup>(2)</sup> **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

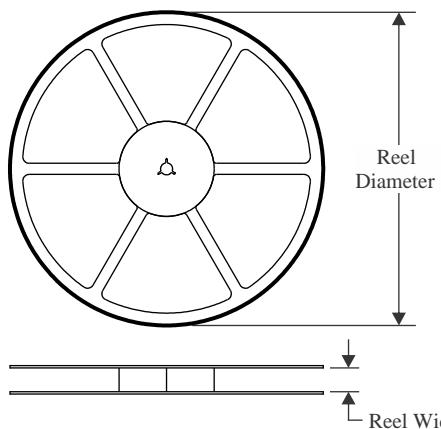
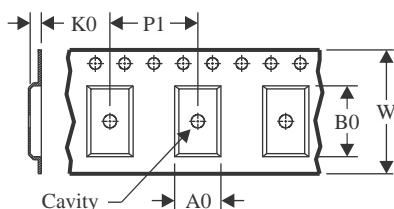
<sup>(4)</sup> **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

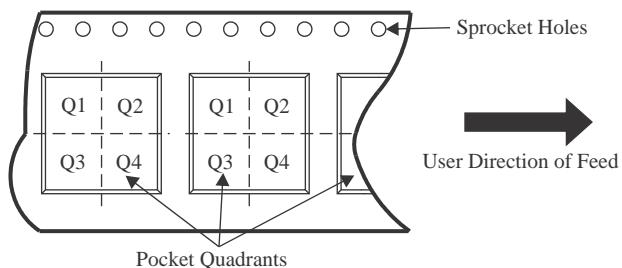
<sup>(6)</sup> **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

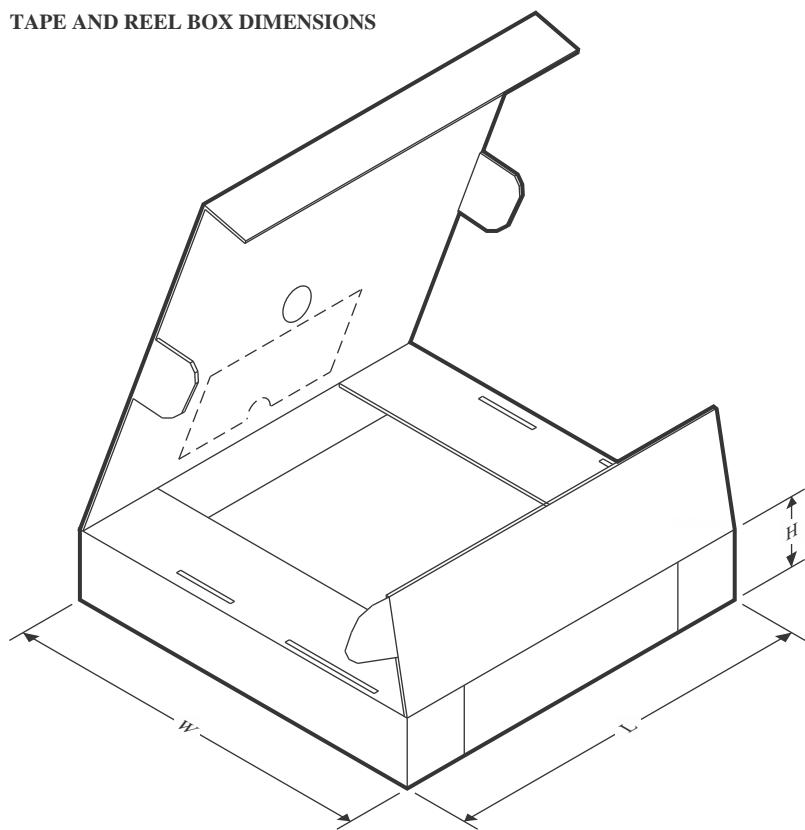


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

**OTHER QUALIFIED VERSIONS OF CD54HC40103, CD74HC40103 :**


- Catalog : [CD74HC40103](#)
- Enhanced Product : [CD74HC40103-EP](#), [CD74HC40103-EP](#)
- Military : [CD54HC40103](#)

**NOTE: Qualified Version Definitions:**

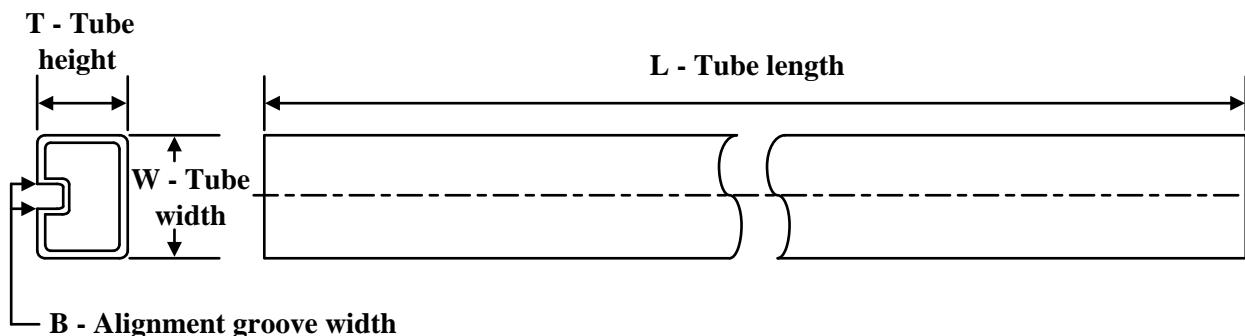
- Catalog - TI's standard catalog product
- Enhanced Product - Supports Defense, Aerospace and Medical Applications
- Military - QML certified for Military and Defense Applications


**TAPE AND REEL INFORMATION**
**REEL DIMENSIONS**

**TAPE DIMENSIONS**


|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**

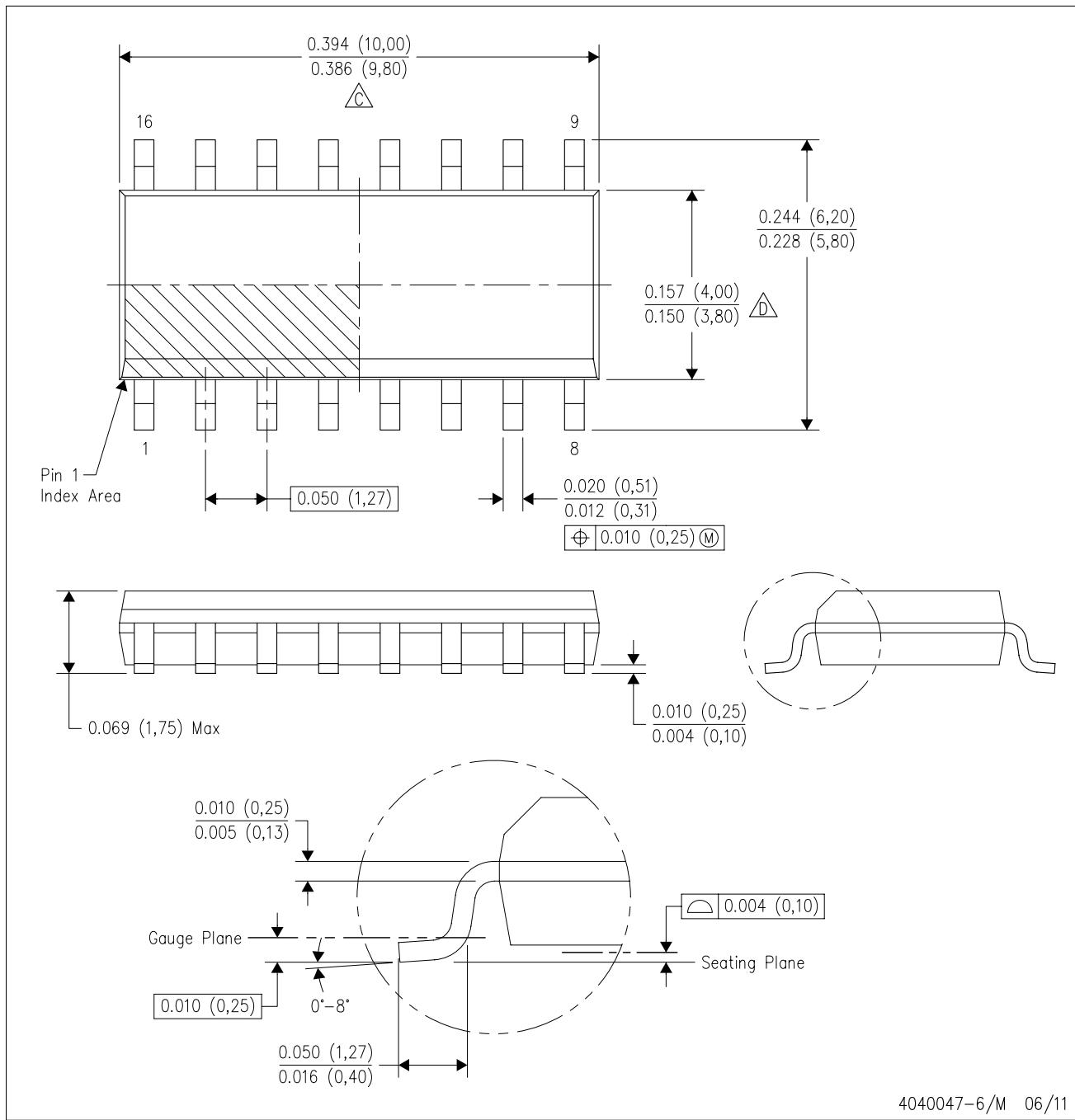


\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|-----------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| CD74HC40103M96  | SOIC         | D               | 16   | 2500 | 330.0              | 16.4               | 6.5     | 10.3    | 2.1     | 8.0     | 16.0   | Q1            |
| CD74HCT40103M96 | SOIC         | D               | 16   | 2500 | 330.0              | 16.4               | 6.5     | 10.3    | 2.1     | 8.0     | 16.0   | Q1            |

**TAPE AND REEL BOX DIMENSIONS**


\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HC40103M96  | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| CD74HCT40103M96 | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |


**TUBE**


\*All dimensions are nominal

| Device          | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T ( $\mu$ m) | B (mm) |
|-----------------|--------------|--------------|------|-----|--------|--------|--------------|--------|
| CD74HC40103E    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HC40103E    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HC40103E.A  | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HC40103E.A  | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HC40103EE4  | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HC40103EE4  | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HCT40103E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HCT40103E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HCT40103E.A | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| CD74HCT40103E.A | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |

D (R-PDSO-G16)

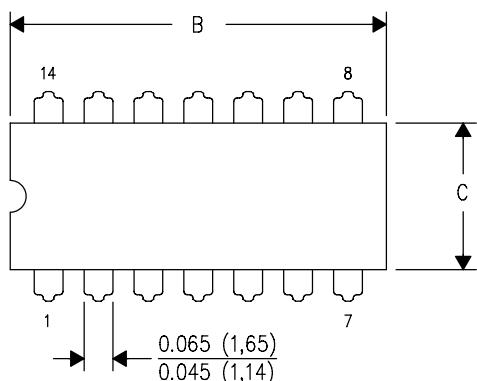
PLASTIC SMALL OUTLINE



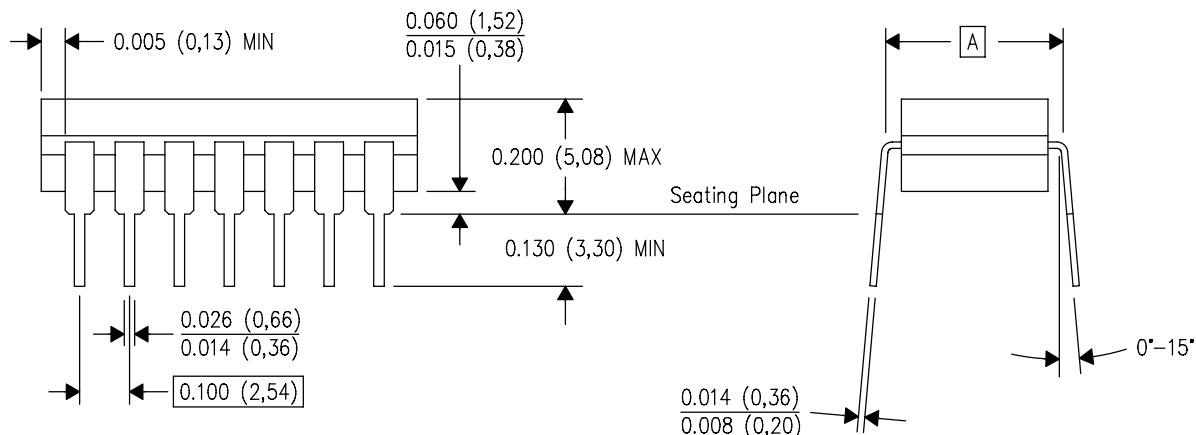
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.


D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

E. Reference JEDEC MS-012 variation AC.


J (R-GDIP-T\*\*)

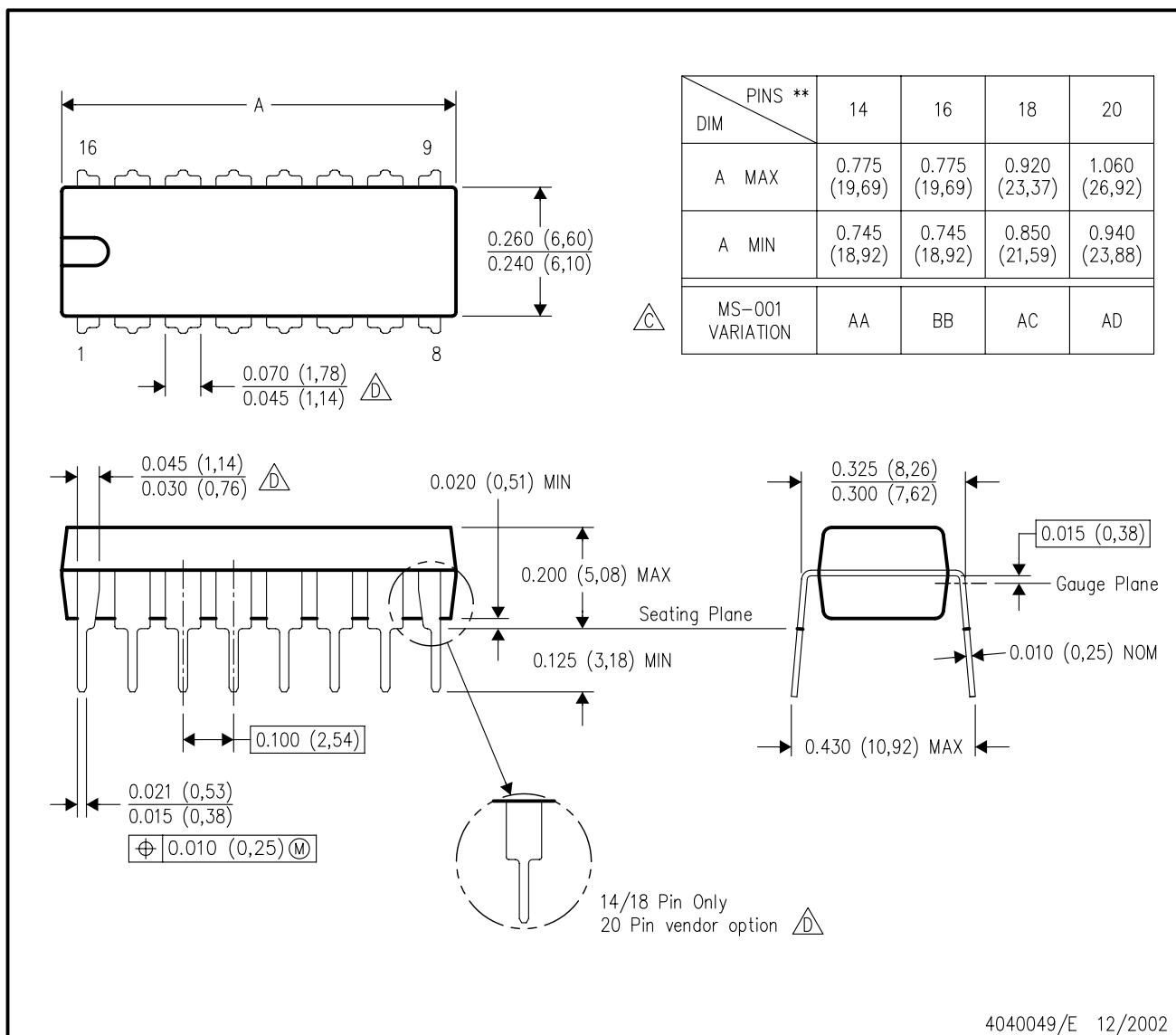
14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



| PINS **<br>DIM | 14                     | 16                     | 18                     | 20                     |
|----------------|------------------------|------------------------|------------------------|------------------------|
| A              | 0.300<br>(7,62)<br>BSC | 0.300<br>(7,62)<br>BSC | 0.300<br>(7,62)<br>BSC | 0.300<br>(7,62)<br>BSC |
| B MAX          | 0.785<br>(19,94)       | .840<br>(21,34)        | 0.960<br>(24,38)       | 1.060<br>(26,92)       |
| B MIN          | —                      | —                      | —                      | —                      |
| C MAX          | 0.300<br>(7,62)        | 0.300<br>(7,62)        | 0.310<br>(7,87)        | 0.300<br>(7,62)        |
| C MIN          | 0.245<br>(6,22)        | 0.245<br>(6,22)        | 0.220<br>(5,59)        | 0.245<br>(6,22)        |




4040083/F 03/03

NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package is hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

## N (R-PDIP-T\*\*)

16 PINS SHOWN

## PLASTIC DUAL-IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025