

High-Speed CMOS Logic 8-Input Multiplexer/Register, Three-State

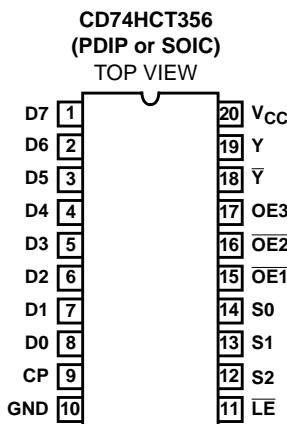
Features

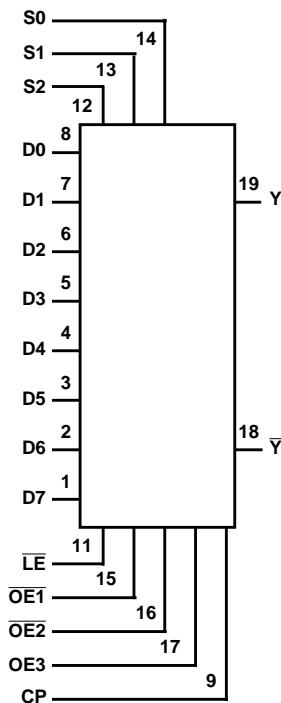
- Edge-Triggered Data Flip-Flops
 - Transparent Select Latches
- Buffered Inputs
- 3-State Complementary Outputs
- Bus Line Driving Capability
- Typical Propagation Delay: $V_{CC} = 5V$, $C_L = 15pF$, $T_A = 25^\circ C$
 - Clock to Output = 22ns
- Fanout (Over Temperature Range)
 - Standard Outputs 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility, $V_{IL} = 0.8V$ (Max), $V_{IH} = 2V$ (Min)
- CMOS Input Compatibility, $I_I \leq 1\mu A$ at V_{OL} , V_{OH}

Description

The CD74HCT356 consists of data selectors/multiplexers that select one of eight sources. The data select bits (S0, S1, and S2) are stored in transparent latches that are enabled by a low latch enable input (\bar{LE}).

The data is stored in edge-triggered flip-flops that are triggered by a low-to-high clock transition.


In both types the 3-state outputs are controlled by three output-enable inputs (OE1, OE2, and OE3).


Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD74HCT356E	-55 to 125	20 Ld PDIP
CD74HCT356M96	-55 to 125	20 Ld SOIC

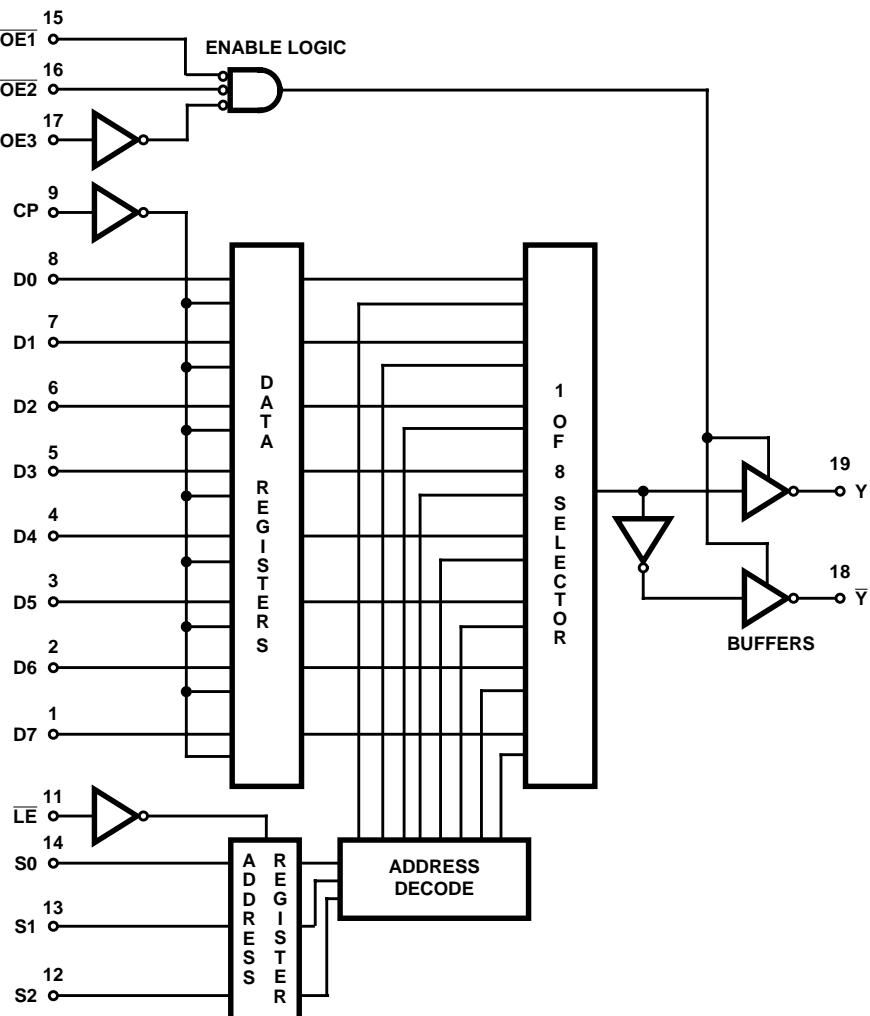
NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel.

Pinout

Functional Diagram

TRUTH TABLE

INPUTS							OUTPUTS	
SELECT (NOTE 1)			CLOCK	OUTPUT ENABLES				
S2	S1	S0	CP	OE1	OE2	OE3	\bar{Y}	Y
X	X	X	X	H	X	X	Z	Z
X	X	X	X	X	H	X	Z	Z
X	X	X	X	X	X	L	Z	Z
L	L	L	\uparrow	L	L	H	$\bar{D}0$	D0
L	L	L	H or L	L	L	H	$\bar{D}0_n$	D0n
L	L	H	\uparrow	L	L	H	$\bar{D}1$	D1
L	L	H	H or L	L	L	H	$\bar{D}1_n$	D1n
L	H	L	\uparrow	L	L	H	$\bar{D}2$	D2
L	H	L	H or L	L	L	H	$\bar{D}2_n$	D2n
L	H	H	\uparrow	L	L	H	$\bar{D}3$	D3
L	H	H	H or L	L	L	H	$\bar{D}3_n$	D3n
H	L	L	\uparrow	L	L	H	$\bar{D}4$	D4
H	L	L	H or L	L	L	H	$\bar{D}4_n$	D4n
H	L	H	\uparrow	L	L	H	$\bar{D}5$	D5
H	L	H	H or L	L	L	H	$\bar{D}5_n$	D5n
H	H	L	\uparrow	L	L	H	$\bar{D}6$	D6
H	H	L	H or L	L	L	H	$\bar{D}6_n$	D6n


TRUTH TABLE (Continued)

INPUTS							OUTPUTS	
SELECT (NOTE 1)			CLOCK	OUTPUT ENABLES				
S2	S1	S0	CP	OE1	OE2	OE3	Y	Y
H	H	H	↑	L	L	H	\bar{D}_7	D7
H	H	H	H or L	L	L	H	\bar{D}_7n	D7n

H = High Voltage Level (Steady State); L = Low Voltage Level (Steady State); \uparrow = Transition from Low to High Level; X = Don't Care; Z = High-Impedance State (Off State); $D_0n \dots D_7n$ = the level of steady-state inputs D0 through D7, respectively, before the most recent low-to-high transition of data control.

NOTE:

1. This column shows the input address setup with \bar{LE} low.

Block Diagram

Logic Diagram

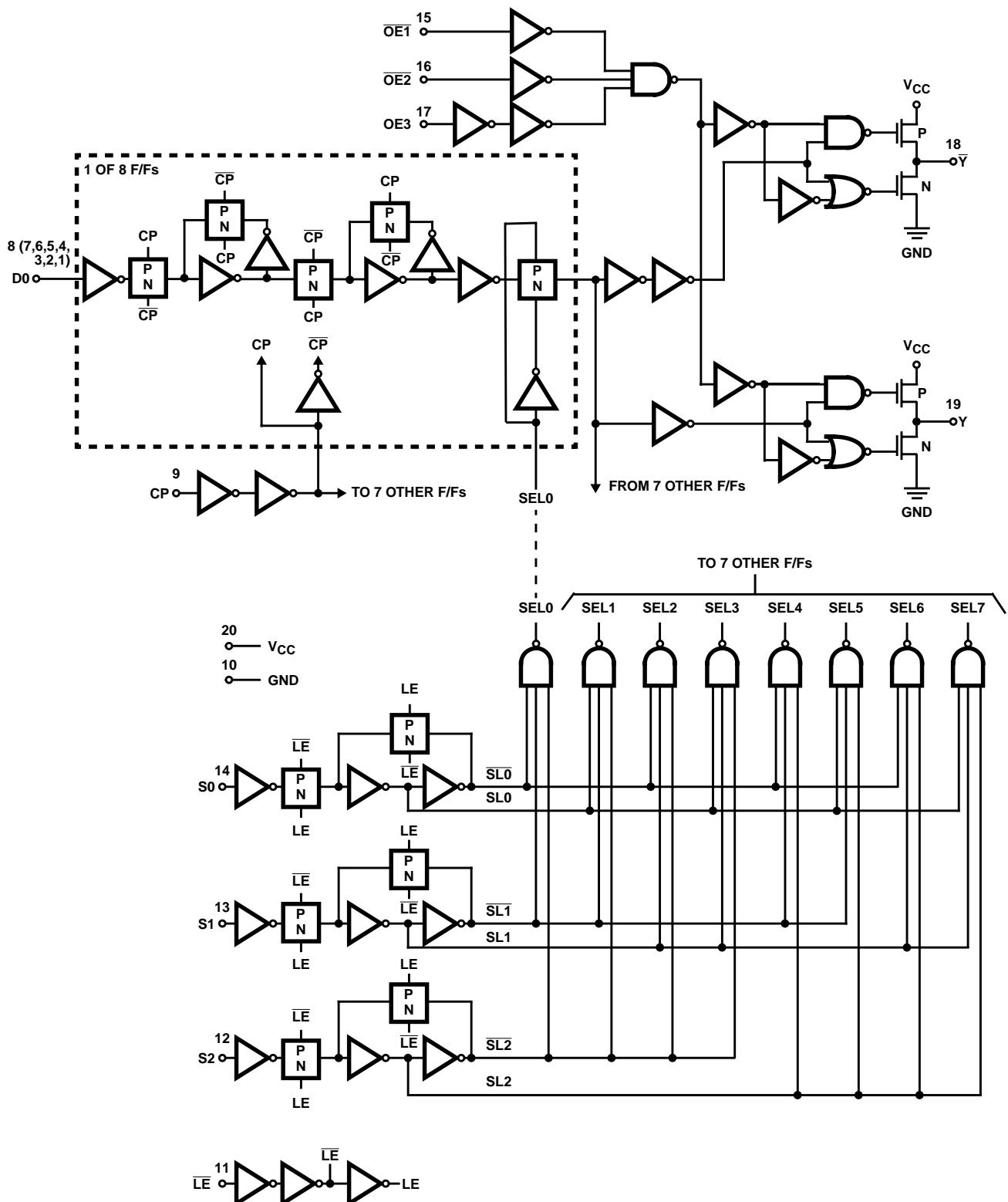


FIGURE 1. LOGIC DIAGRAM

Absolute Maximum Ratings

DC Supply Voltage, V_{CC}	-0.5V to 7V
DC Input Diode Current, I_{IK} For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$	$\pm 20mA$
DC Output Diode Current, I_{OK} For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$	$\pm 20mA$
DC Drain Current, per Output, I_O For $-0.5V < V_O < V_{CC} + 0.5V$	$\pm 35mA$
DC Output Source or Sink Current per Output Pin, I_O For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$	$\pm 25mA$
DC V_{CC} or Ground Current, I_{CC}	$\pm 50mA$

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} ($^{\circ}C/W$)
E (PDIP) Package	69
M (SOIC) Package	58
Maximum Junction Temperature	150 $^{\circ}C$
Maximum Storage Temperature Range	-65 $^{\circ}C$ to 150 $^{\circ}C$
Maximum Lead Temperature (Soldering 10s)	300 $^{\circ}C$
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range, T_A	-55 $^{\circ}C$ to 125 $^{\circ}C$
Supply Voltage Range, V_{CC}	4.5V to 5.5V
DC Input or Output Voltage, V_I, V_O	0V to V_{CC}
Input Rise and Fall Time		
2V	1000ns (Max)
4.5V	500ns (Max)
6V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		V_{CC} (V)	25 $^{\circ}C$			-40 $^{\circ}C$ TO 85 $^{\circ}C$		-55 $^{\circ}C$ TO 125 $^{\circ}C$		UNITS
		V_I (V)	I_O (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
High Level Input Voltage	V_{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V_{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or V_{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V_{OL}	V_{IH} or V_{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	I_I	V_{CC} to GND	0	5.5	-	-	± 0.1	-	± 1	-	± 1	μA
Quiescent Device Current	I_{CC}	V_{CC} or GND	0	5.5	-	-	8	-	80	-	160	μA
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI_{CC} (Note 3)	V_{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μA
3-State Leakage Current	I_{OZ}	V_{IL} or V_{IH}	$V_O = V_{CC}$ or GND	5.5	-	-	± 0.5	-	± 5	-	± 10	μA

NOTE:

3. For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

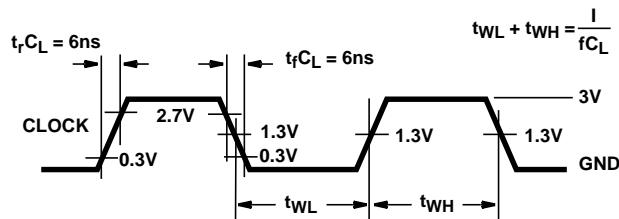
Input Loading Table

INPUT	UNIT LOADS
D0-D7	0.50
S0, S1, S3	0.70
OE1, OE2	0.80
OE3	0.25
LE	0.25
CP	0.60

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360 μ A max at 25°C.

Prerequisite For Switching Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	V _{CC} (V)	25°C			-40°C TO 85°C		-55°C TO 125°C		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
CP Pulse Width	t _{PLH} , t _{PHL}	-	4.5	16	20	-	25	-	30	-	ns
LE Pulse Width	t _{PLH} , t _{PHL}	-	4.5	16	20	-	25	-	30	-	ns
Setup Times Dn \rightarrow LE	t _{SU}	-	4.5	5	7	-	9	-	11	-	ns
Setup Times Sn \rightarrow LE	t _{SU}	-	4.5	5	7	-	9	-	11	-	ns
Hold Times Dn \rightarrow LE	t _H	-	4.5	9	9	-	11	-	14	-	ns
Hold Times Sn \rightarrow LE	t _H	-	4.5	12	12	-	15	-	18	-	ns


Switching Specifications Input $t_r, t_f = 6\text{ns}$

PARAMETER	SYMBOL	TEST CONDITIONS	V_{CC} (V)	25°C		MAX	MAX	-55°C TO 125°C	UNITS
				TYP	MAX				
Propagation Delay, $CP \rightarrow Y, Y$	t_{PLH}, t_{PHL}	$C_L = 50\text{pF}$	4.5	-	51	64	77	ns	ns
		$C_L = 15\text{pF}$	5	22	-	-	-		
Propagation Delay, $Sn \rightarrow Y, \bar{Y}$	t_{PLH}, t_{PHL}	$C_L = 50\text{pF}$	4.5	-	59	74	89	ns	ns
		$C_L = 15\text{pF}$	5	25	-	-	-		
Propagation Delay, $LE \rightarrow Y, \bar{Y}$	t_{PLH}, t_{PHL}	$C_L = 50\text{pF}$	4.5	-	63	79	94	ns	ns
		$C_L = 15\text{pF}$	5	25	-	-	-		
Output Disabling Time	t_{PLZ}, t_{PHZ}	$C_L = 50\text{pF}$	4.5	-	33	41	50	ns	ns
	t_{PLZ}	$C_L = 15\text{pF}$	5	13	-	-	-		
	t_{PHZ}	$C_L = 15\text{pF}$	5	15	-	-	-		
Output Enabling Time	t_{PLZ}, t_{PHZ}	$C_L = 50\text{pF}$	4.5	-	34	43	51	ns	ns
		$C_L = 15\text{pF}$	5	14	-	-	-		
Output Transition Time	t_{TLH}, t_{THL}	$C_L = 50\text{pF}$	4.5	-	12	15	18	ns	ns
Input Capacitance	C_{IN}	-	-	-	10	10	10	pF	pF
3-State Capacitance	C_O	-	-	-	20	20	20	pF	pF
Power Dissipation Capacitance (Notes 4, 5)	C_{PD}	-	5	52	-	-	-	-	pF

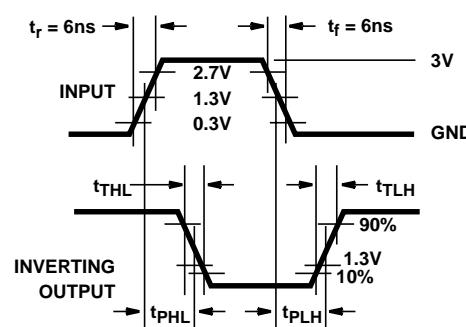
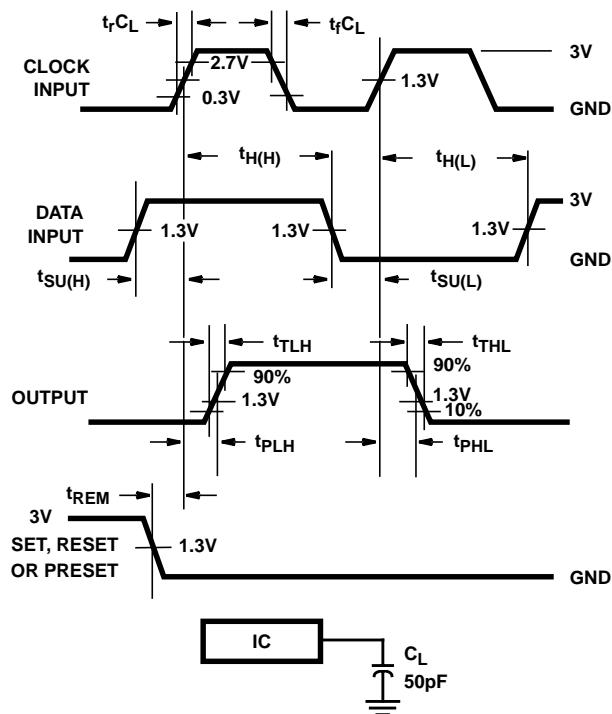
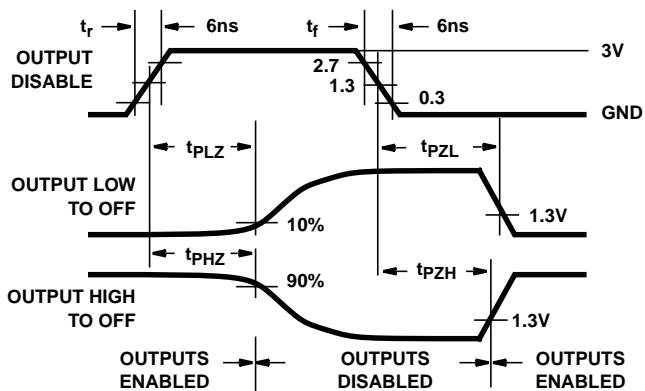
NOTES:

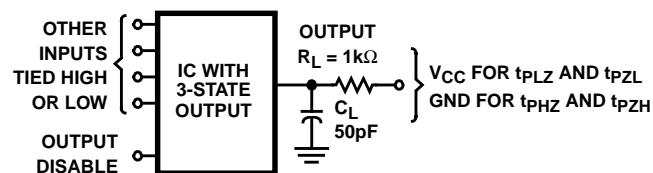
4. C_{PD} is used to determine the dynamic power consumption, per device.
5. $P_D = V_{CC}^2 (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 2. CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH


FIGURE 3. TRANSITION TIMES AND PROPAGATION-DELAY TIMES, COMBINATION LOGIC

Test Circuits and Waveforms (Continued)

FIGURE 4. SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION-DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

FIGURE 5. 3-STATE PROPAGATION-DELAY WAVEFORM

NOTE: Open-drain waveforms t_{PLZ} and t_{PZL} are the same as those for 3-state shown on the left. The test circuit is Output $R_L = 1k\Omega$ to V_{CC} , $C_L = 50pF$.

FIGURE 6. 3-STATE PROPAGATION-DELAY TEST CIRCUIT

PACKAGING INFORMATION

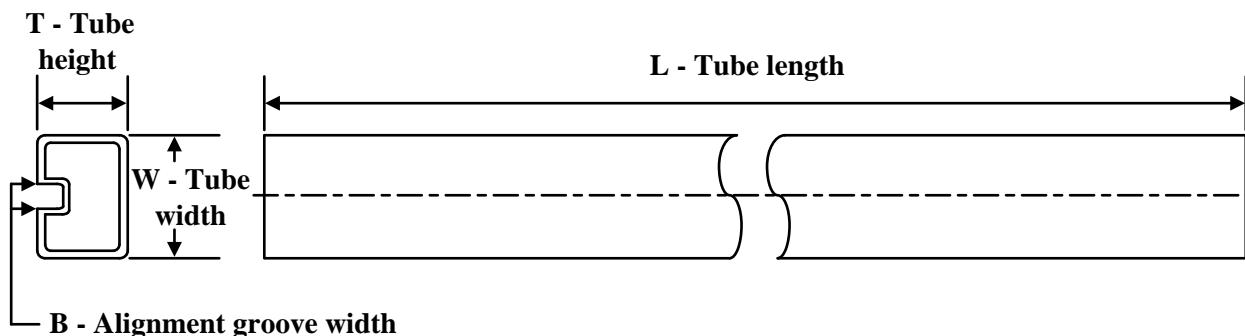
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
CD74HCT356E	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HCT356E
CD74HCT356E.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HCT356E

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

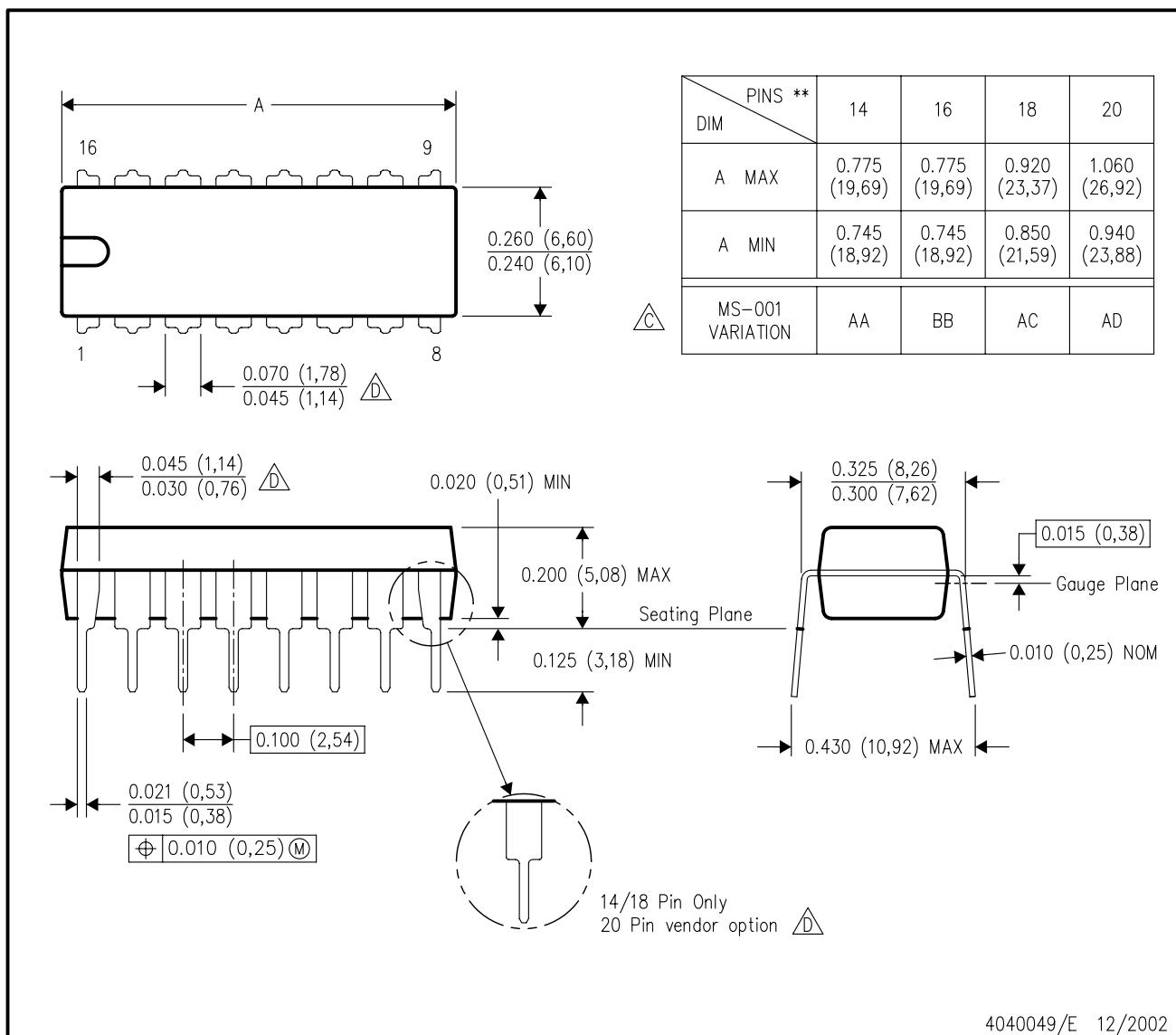
⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
CD74HCT356E	N	PDIP	20	20	506	13.97	11230	4.32
CD74HCT356E.A	N	PDIP	20	20	506	13.97	11230	4.32

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025