

OPA404

Quad High-Speed Precision *Difet*® OPERATIONAL AMPLIFIER

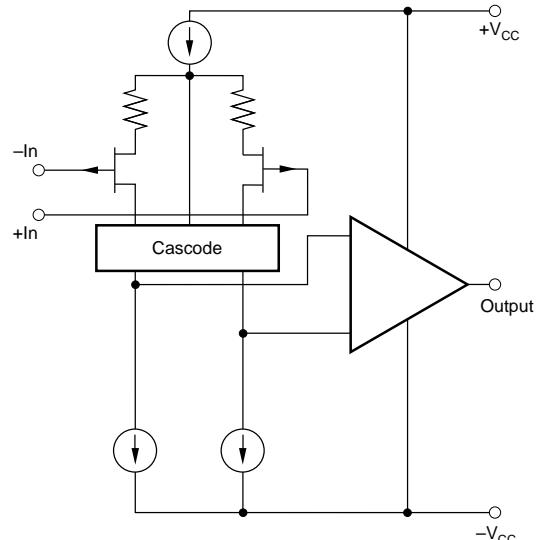
FEATURES

- WIDE BANDWIDTH: 6.4MHz
- HIGH SLEW RATE: 35V/ μ s
- LOW OFFSET: $\pm 750\mu$ V max
- LOW BIAS CURRENT: $\pm 4\text{pA}$ max
- LOW SETTLING: 1.5 μ s to 0.01%
- STANDARD QUAD PINOUT

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DETECTOR ARRAYS

DESCRIPTION


The OPA404 is a high performance monolithic *Difet*®(dielectrically-isolated FET) quad operational amplifier. It offers an unusual combination of very-low bias current together with wide bandwidth and fast slew rate.

Noise, bias current, voltage offset, drift, and speed are superior to BIFET® amplifiers.

Laser-trimming of thin-film resistors gives very low offset and drift—the best available in a quad FET op amp.

The OPA404's input cascode design allows high precision input specifications and uncompromised high-speed performance.

Standard quad op amp pin configuration allows upgrading of existing designs to higher performance levels. The OPA404 is unity-gain stable.

OPA404 Simplified Circuit
(Each Amplifier)

Difet®, Burr-Brown Corp.
BIFET®, National Semiconductor Corp.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $V_{CC} = \pm 15$ VDC and $T_A = +25^\circ\text{C}$ unless otherwise noted.

PARAMETER	CONDITIONS	OPA404AG, KP, KU ⁽¹⁾			OPA404BG			OPA404SG			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT NOISE					*	*		*	*	*	
Voltage: $f_O = 10\text{Hz}$			32								$\text{nV}/\sqrt{\text{Hz}}$
$f_O = 100\text{Hz}$			19								$\text{nV}/\sqrt{\text{Hz}}$
$f_O = 1\text{kHz}$			15								$\text{nV}/\sqrt{\text{Hz}}$
$f_O = 10\text{kHz}$			12								$\text{nV}/\sqrt{\text{Hz}}$
$f_B = 10\text{Hz to } 10\text{kHz}$			1.4								μVrms
$f_B = 0.1\text{Hz to } 10\text{Hz}$			0.95								$\mu\text{Vp-p}$
Current: $f_B = 0.1\text{Hz to } 10\text{Hz}$			12								fA, p-p
$f_O = 0.1\text{Hz thru } 20\text{kHz}$			0.6		*			*	*	*	$\text{fA}/\sqrt{\text{Hz}}$
OFFSET VOLTAGE											
Input Offset Voltage	$V_{CM} = 0\text{VDC}$		± 260	$\pm 1\text{mV}$		*	± 750		*	*	μV
KP, KU			± 750	$\pm 2.5\text{mV}$		*					μV
Average Drift	$T_A = T_{MIN} \text{ to } T_{MAX}$		± 3			*					$\mu\text{V}/^\circ\text{C}$
KP, KU			± 5								$\mu\text{V}/^\circ\text{C}$
Supply Rejection	$\pm V_{CC} = 12\text{V to } 18\text{V}$	80	86		*		*	*	*	*	dB
KP, KU		76	100		*			*	*	*	dB
Channel Separation	$100\text{Hz, } R_L = 2\text{k}\Omega$		125		*			*	*	*	dB
BIAS CURRENT											
Input Bias Current	$V_{CM} = 0\text{VDC}$		± 1	± 8		*	± 4		*	*	pA
KP, KU			± 1	± 12							pA
OFFSET CURRENT											
Input Offset Current	$V_{CM} = 0\text{VDC}$		0.5	8		*	4		*	*	pA
KP, KU			0.5	12							pA
IMPEDANCE											
Differential			$10^{13} \parallel 1$			*					$\Omega \parallel \text{pF}$
Common-Mode			$10^{14} \parallel 3$			*					$\Omega \parallel \text{pF}$
VOTAGE RANGE											
Common-Mode Input Range			± 10.5	$+13, -11$		*					V
Common-Mode Rejection	$V_{IN} = \pm 10\text{VDC}$	88	92		*			*	*	*	dB
KP, KU		84	100		*			*	*	*	dB
Open-Loop Voltage Gain	$R_L \geq 2\text{k}\Omega$	88	100		92	*		*	*	*	dB
FREQUENCY RESPONSE											
Gain Bandwidth			4	6.4		5	*		*	*	MHz
Full Power Response				570		*			*	*	kHz
Slew Rate	$V_O = \pm 10\text{V, } R_L = 2\text{k}\Omega$	24	35		28	*		*	*	*	$\text{V}/\mu\text{s}$
Settling Time: 0.1%			0.6			*			*	*	μs
0.01%			1.5			*			*	*	μs
RATED OUTPUT											
Voltage Output	$R_L = 2\text{k}\Omega$		± 11.5	$+13.2, -13.8$		*			*	*	V
Current Output	$V_O = \pm 10\text{VDC}$		± 5	± 10		*			*	*	mA
Output Resistance	1MHz, Open Loop			80		*			*	*	Ω
Load Capacitance Stability				1000		*			*	*	pF
Short Circuit Current			± 10	± 27		40	*	*	*	*	mA
POWER SUPPLY											
Rated Voltage											VDC
Voltage Range,											
Derated Performance											
Current, Quiescent	$I_O = 0\text{mADC}$	± 5	± 15			*			*	*	VDC
											mA
TEMPERATURE RANGE											
Specification	Ambient Temperature	-25			85	*		*			$^\circ\text{C}$
KP, KU		0			70						$^\circ\text{C}$
Operating	Ambient Temperature	-55			125	*		*			$^\circ\text{C}$
KP, KU		-25			85			*			$^\circ\text{C}$
Storage	Ambient Temperature	-65			150	*		*			$^\circ\text{C}$
KP, KU		-40			125			*			$^\circ\text{C}$
θ Junction-Ambient											$^\circ\text{C}/\text{W}$
KP, KU											$^\circ\text{C}/\text{W}$

*Specifications same as OPA404AG.

NOTE: (1) OPA404KU may be marked OPA404U.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 15$ VDC and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

PARAMETER	CONDITIONS	OPA404AG, KP, KU			OPA404BG			OPA404SG			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
TEMPERATURE RANGE Specification Range KP, KU	Ambient Temperature	-25 0		+85 +70	*		*	-55		+125	°C °C
INPUT OFFSET VOLTAGE Input Offset Voltage KP KU Average Drift KP, KU Supply Rejection	$V_{CM} = 0$ VDC		± 450 ±1 ±3 ±5 96	2mV ±3.5		*	±1.5mV		±550	±2.5mV	µV mV µV/C µV/C dB
BIAS CURRENT Input Bias Current	$V_{CM} = 0$ VDC		±32	±200		*	±100		±500	±5nA	pA
OFFSET CURRENT Input Offset Current	$V_{CM} = 0$ VDC		17	100		*	50		260	2.5nA	pA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection KP, KU	$V_{IN} = \pm 10$ VDC	±10 82 80	±12.7, -10.6 99 99		*	*		±10 80	±12.6, -10.5 88		V dB dB
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain	$R_L \geq 2$ kΩ	82	94		86	*		80	88		dB
RATED OUTPUT Voltage Output Current Output Short Circuit Current	$R_L = 2$ kΩ $V_O = \pm 10$ VDC $V_O = 0$ VDC	±11.5 ±5 ±8	±12.9, -13.8 ±9 ±20	±50	*	*		±11 *	±12.7, -13.8 ±8 *		V mA mA
POWER SUPPLY Current, Quiescent	$I_O = 0$ mADC		9.3	10.5		*	*		9.4	11	mA

* Specification same as OPA404AG.

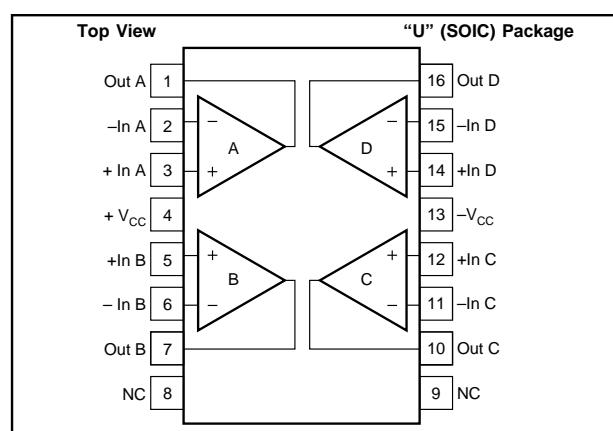
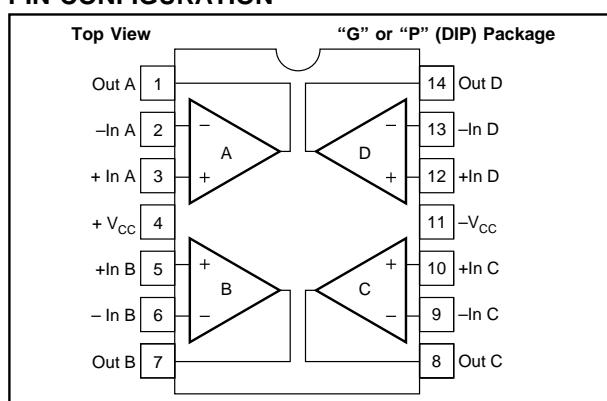
ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA404KP	14-Pin Plastic DIP	0°C to +70°C
OPA404KU ⁽¹⁾	16-Pin Plastic SOIC	0°C to +70°C
OPA404AG	14-Pin Ceramic DIP	-25°C to +85°C
OPA404BG	14-Pin Ceramic DIP	-25°C to +85°C
OPA404SG	14-Pin Ceramic DIP	-55°C to +125°C

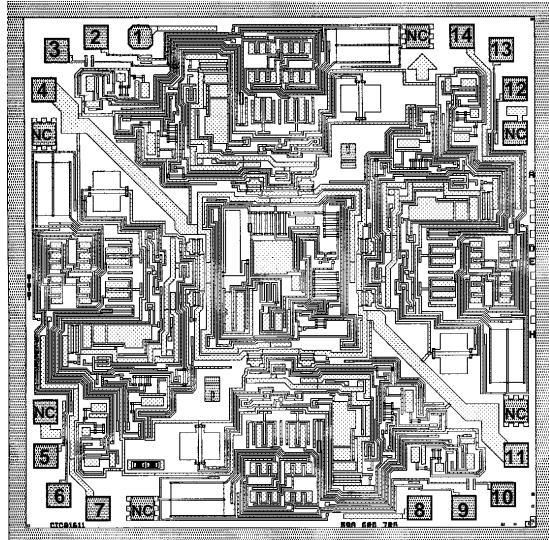
NOTE: (1) OPA404KU may be marked OPA404U.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA404KP	14-Pin Plastic DIP	010
OPA404KU ⁽²⁾	16-Pin Plastic SOIC	211
OPA404AG	14-Pin Ceramic DIP	169
OPA404BG	14-Pin Ceramic DIP	169
OPA404SG	14-Pin Ceramic DIP	169



NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book. (2) OPA404KU may be marked OPA404U.

ABSOLUTE MAXIMUM RATINGS


Supply	±18VDC	Operating Temperature Range .. P, U = -25°C/+85°C, G = -55°C/+125°C
Internal Power Dissipation ⁽¹⁾	1000mW	Lead Temperature (soldering, 10s)
Differential Input Voltage ⁽²⁾	±36VDC	SOIC (soldering, 3s)
Input Voltage Range ⁽²⁾	±18VDC	Output Short-Circuit Duration ⁽³⁾
Storage Temperature Range ... P, U = -40°C/+125°C, G = -65°C/+150°C		Continuous Junction Temperature
		+175°C

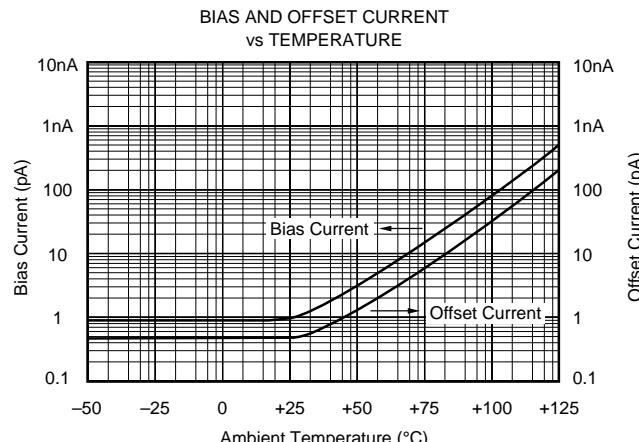
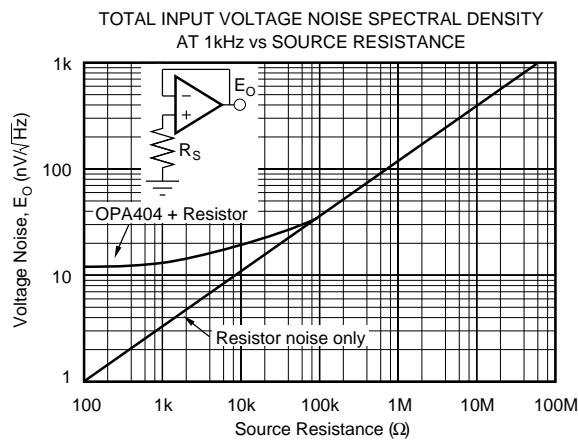
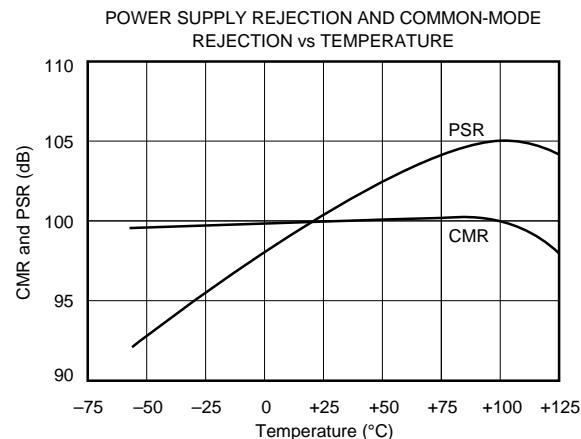
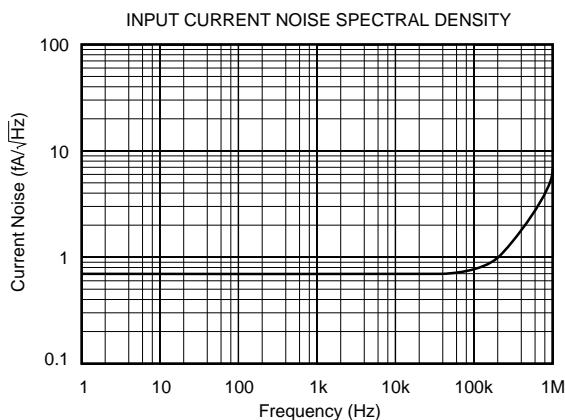
NOTES: (1) Packages must be derated based on $\theta_{JC} = 30^\circ\text{C}/\text{W}$ or $\theta_{JA} = 120^\circ\text{C}/\text{W}$. (2) For supply voltages less than ±18VDC the absolute maximum input voltage is equal to: $18V > V_{IN} > -V_{CC} - 8V$. See Figure 2. (3) Short circuit may be to power supply common only. Rating applies to +25°C ambient. Observe dissipation limit and T_J .

PIN CONFIGURATION

DICE INFORMATION

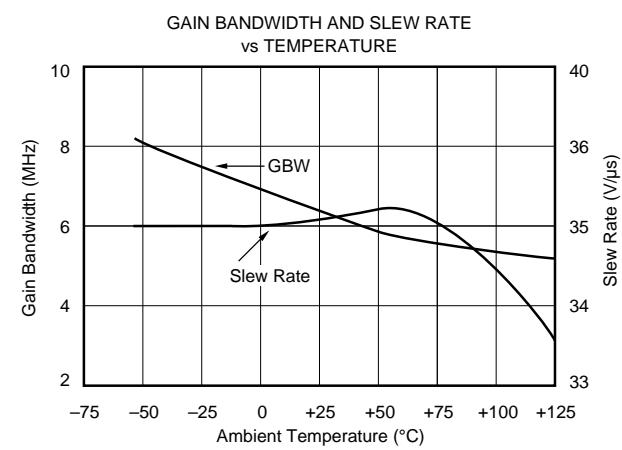
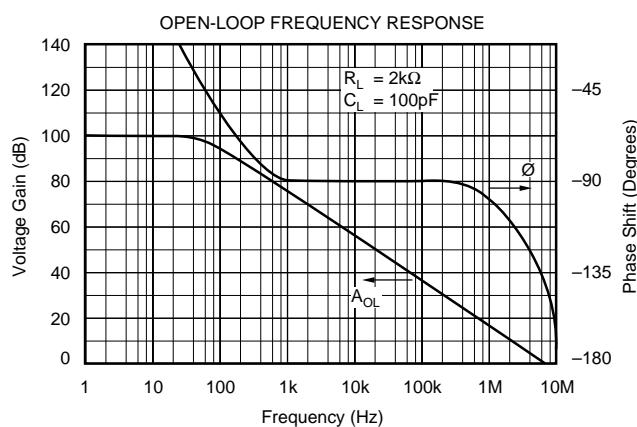
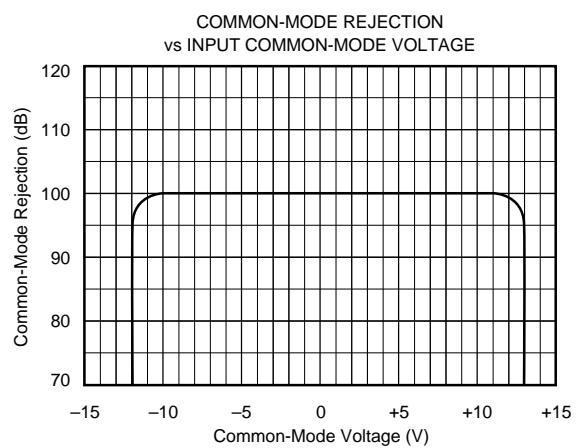
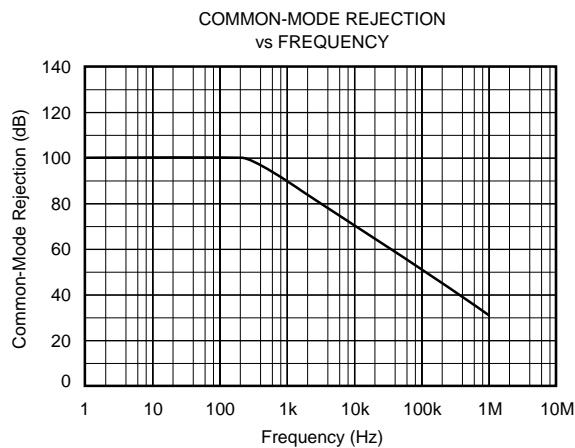
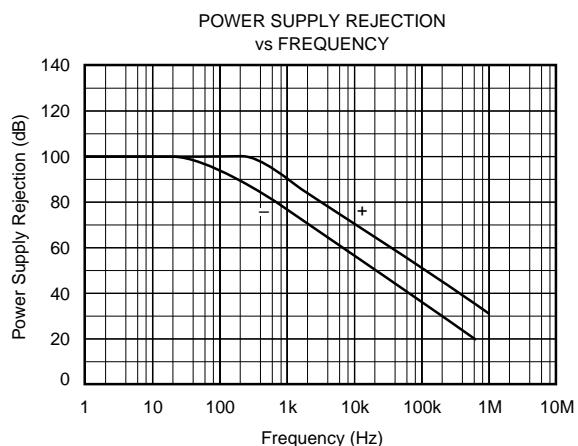
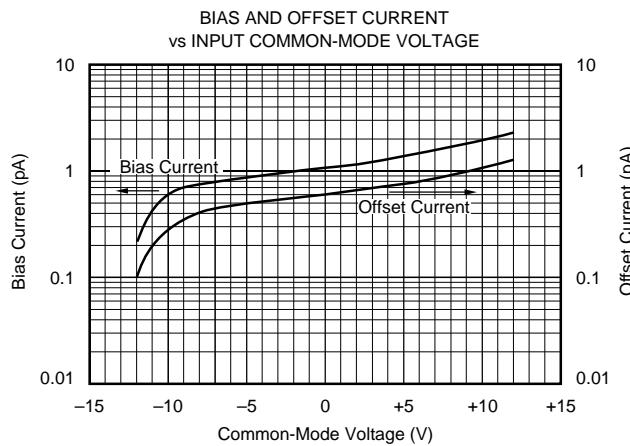
OPA404 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	Output A	8	Output C
2	-Input A	9	-Input C
3	+Input A	10	+Input C
4	+V _{CC}	11	-V _{CC}
5	+Input B	12	+Input D
6	-Input B	13	-Input D
7	Output B	14	Output D

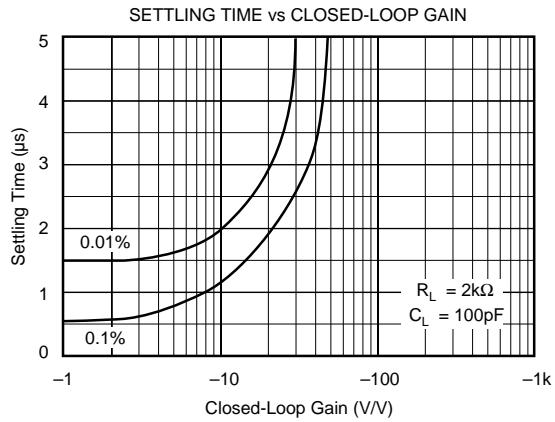
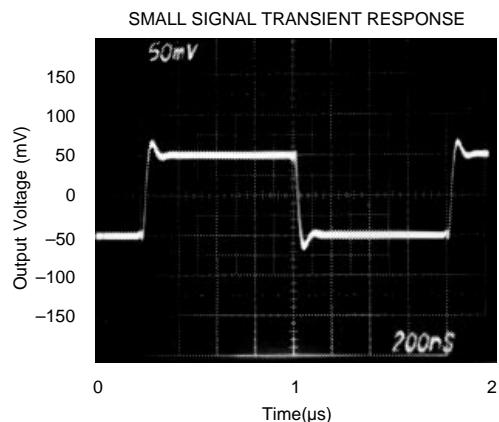
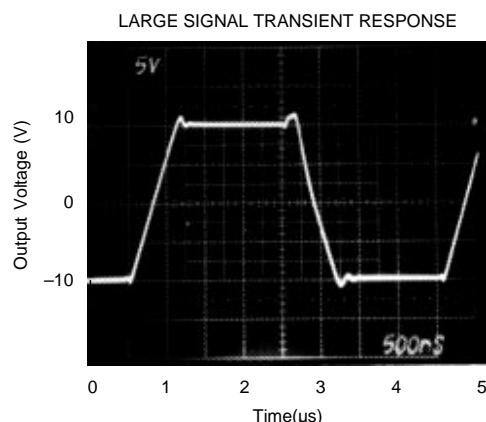
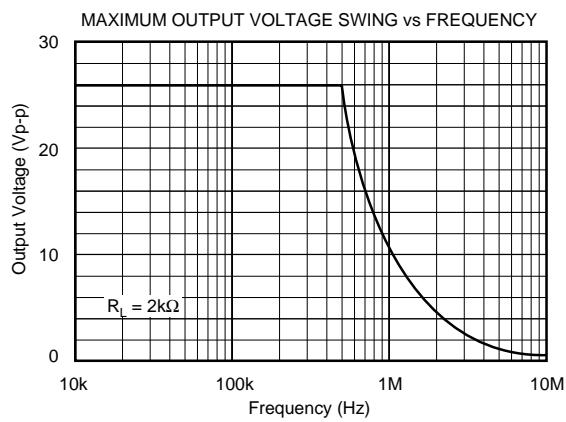
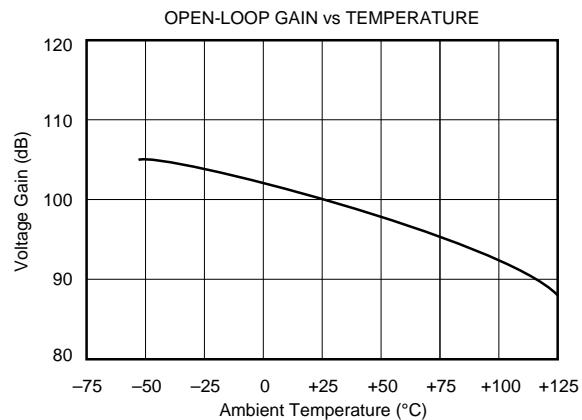
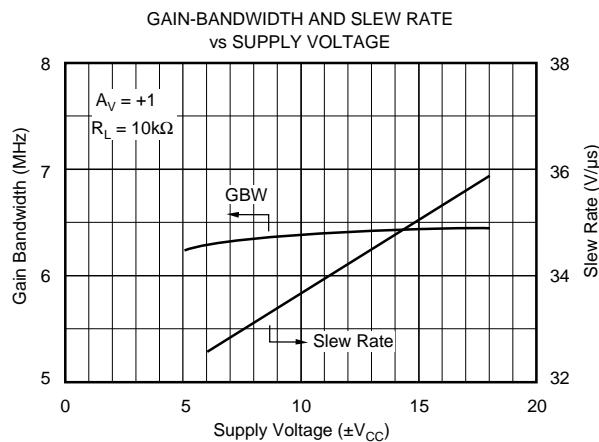




Substrate Bias: -V_{CC}
NC: No connection

MECHANICAL INFORMATION

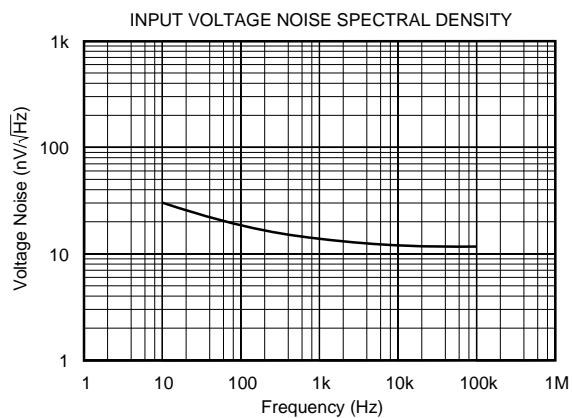
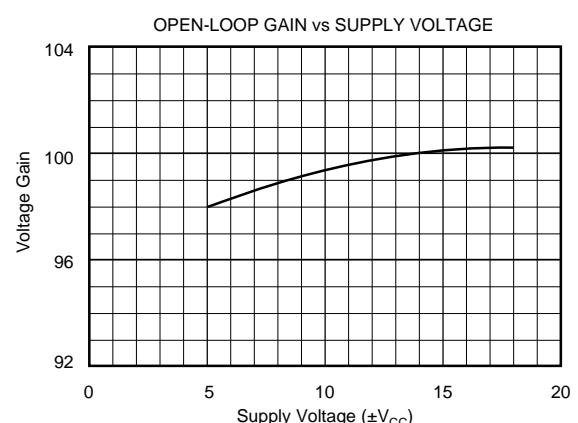
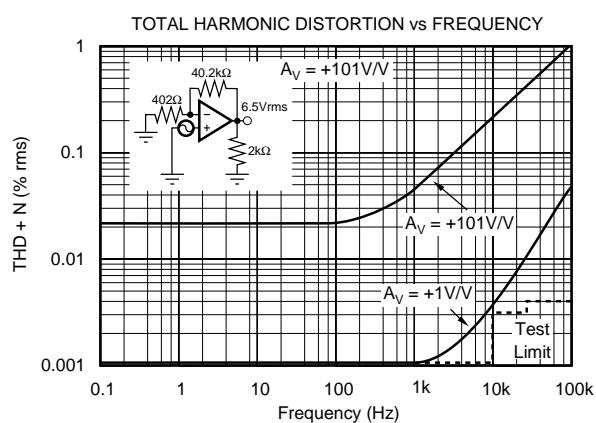
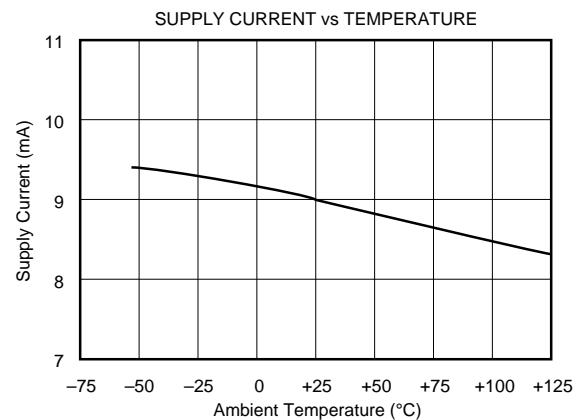
	MILS (0.001")	MILLIMETERS
Die Size	108 x 108 \pm 5	2.74 x 2.74 \pm 0.13
Die Thickness	20 \pm 3	0.51 \pm 0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		None







TYPICAL PERFORMANCE CURVES

T_A = +25°C, V_{CC} = \pm 15VDC unless otherwise noted.







TYPICAL PERFORMANCE CURVES (CONT)

$T_A = +25^\circ\text{C}$, $V_{CC} = \pm 15\text{VDC}$ unless otherwise noted.





TYPICAL PERFORMANCE CURVES (CONT)

$T_A = +25^\circ\text{C}$, $V_{CC} = \pm 15\text{VDC}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

$T_A = +25^\circ\text{C}$, $V_{CC} = \pm 15\text{VDC}$ unless otherwise noted.

APPLICATIONS INFORMATION

OFFSET VOLTAGE ADJUSTMENT

The OPA404 offset voltage is laser-trimmed and will require no further trim for most applications. If desired, offset voltage can be trimmed by summing (see Figure 1). With this trim method there will be no degradation of input offset drift.

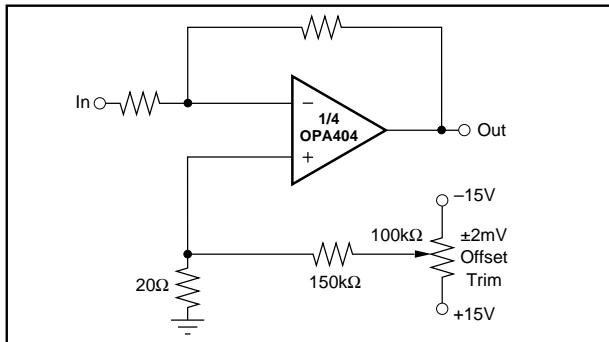


FIGURE 1. Offset Voltage Trim.

INPUT PROTECTION

Conventional monolithic FET operational amplifiers require external current-limiting resistors to protect their inputs against destructive currents that can flow when input FET gate-to-substrate isolation diodes are forward-biased. Most BIFET amplifiers can be destroyed by the loss of $-V_{CC}$.

Unlike BIFET amplifiers, the **Difet** OPA404 requires input current limiting resistors only if its input voltage is greater than 8 volts more negative than $-V_{CC}$. A 10kΩ series resistor will limit the input current to a safe value with up to ±15V input levels even if both supply voltages are lost. (See Figure 2 and Absolute Maximum Ratings).

Static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers (both bipolar and FET types), this may cause a noticeable degradation of offset voltage and drift.

Static protection is recommended when handling any precision IC operational amplifier.

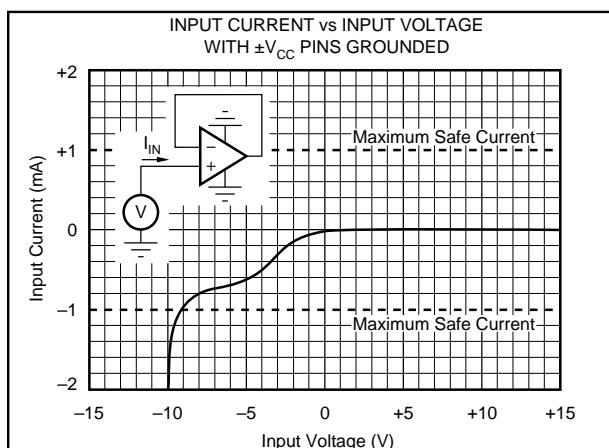


FIGURE 2. Input Current vs Input Voltage with $\pm V_{CC}$ Pins Grounded.

GUARDING AND SHIELDING

As in any situation where high impedances are involved, careful shielding is required to reduce "hum" pickup in input leads. If large feedback resistors are used, they should also be shielded along with the external input circuitry.

Leakage currents across printed circuit boards can easily exceed the bias current of the OPA404. To avoid leakage, utmost care must be used in planning the board layout. A "guard" pattern should completely surround the high impedance input leads and should be connected to a low-impedance point which is at the signal input potential. (See Figure 3).

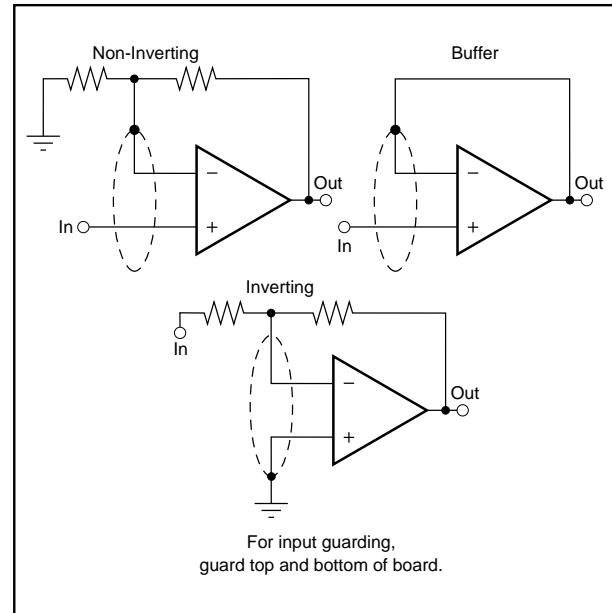


FIGURE 3. Connection of Input Guard.

HANDLING AND TESTING

Measuring the unusually low bias current of the OPA404 is difficult without specialized test equipment; most commercial benchtop testers cannot accurately measure the OPA404 bias current. Low-leakage test sockets and special test fixtures are recommended if incoming inspection of bias current is to be performed.

To prevent surface leakage between pins, the DIP package should not be handled by bare fingers. Oils and salts from fingerprints or careless handling can create leakage currents that exceed the specified OPA404 bias currents.

If necessary, DIP packages and PC board assemblies can be cleaned with Freon TF®, baked for 30 minutes at 85°C, rinsed with de-ionized water, and baked again for 30 minutes at 85°C. Surface contamination can be prevented by the application of a high-quality conformal coating to the cleaned PC board assembly.

BIAS CURRENT CHANGE vs COMMON-MODE VOLTAGE

The input bias currents of most popular BIFET operational amplifiers are affected by common-mode voltage (Figure 4). Higher input FET gate-to-drain voltage causes leakage and ionization (bias) currents to increase. Due to its cascode input stage, the extremely low bias current of the OPA404 is not compromised by common-mode voltage.

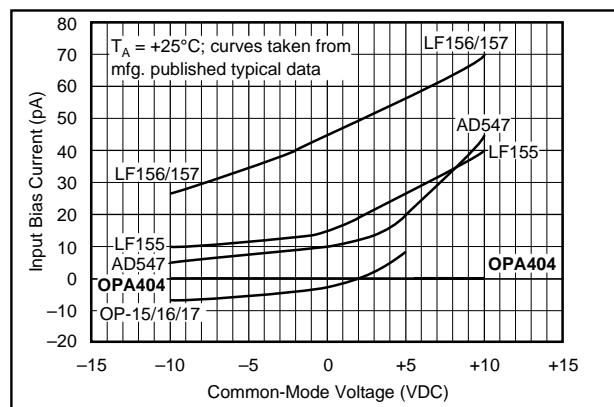


FIGURE 4. Input Bias Current vs Common-Mode Voltage.

APPLICATIONS CIRCUITS

Figures 5 through 11 are circuit diagrams of various applications for the OPA404.

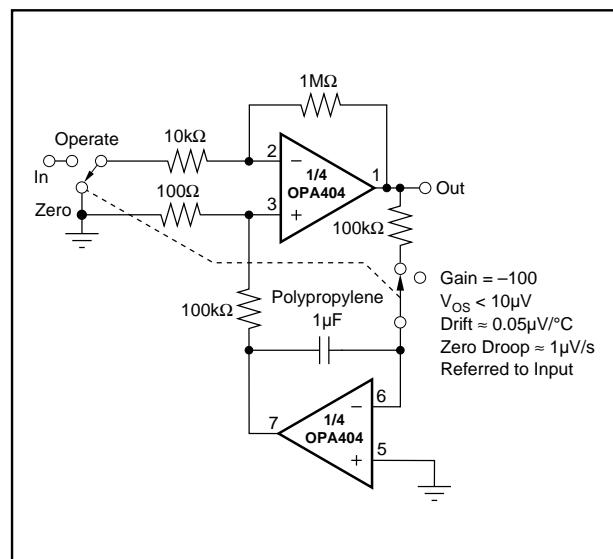


FIGURE 5. Auto-Zero Amplifier.

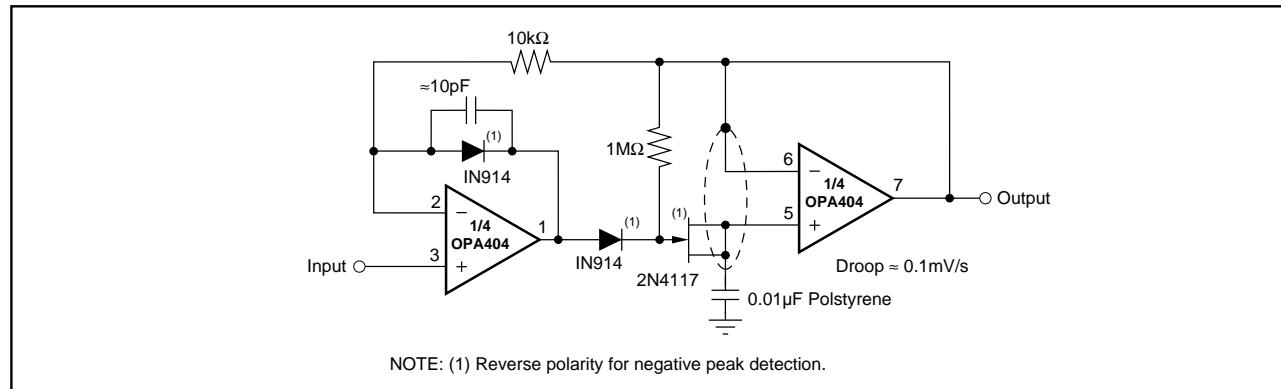


FIGURE 6. Low-Droop Positive Peak Detector.

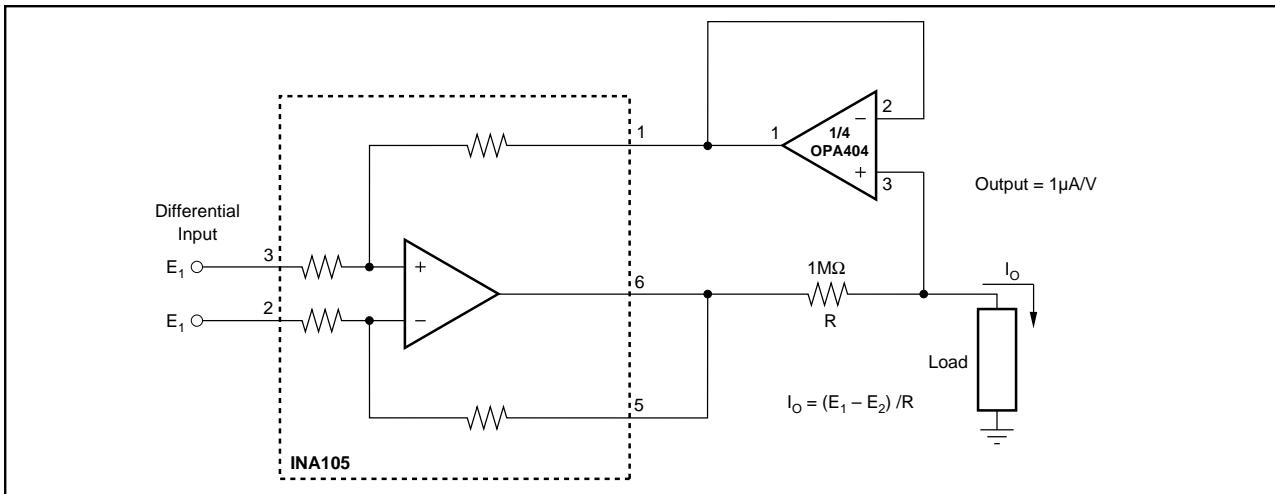


FIGURE 7. Voltage-Controlled Microamp Current Source.

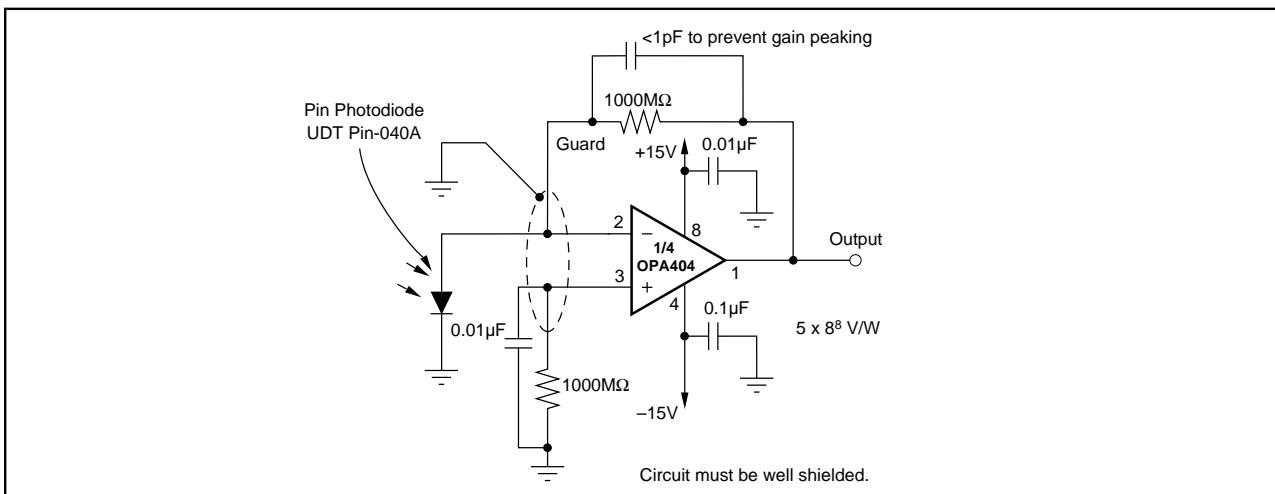


FIGURE 8. Sensitive Photodiode Amplifier.

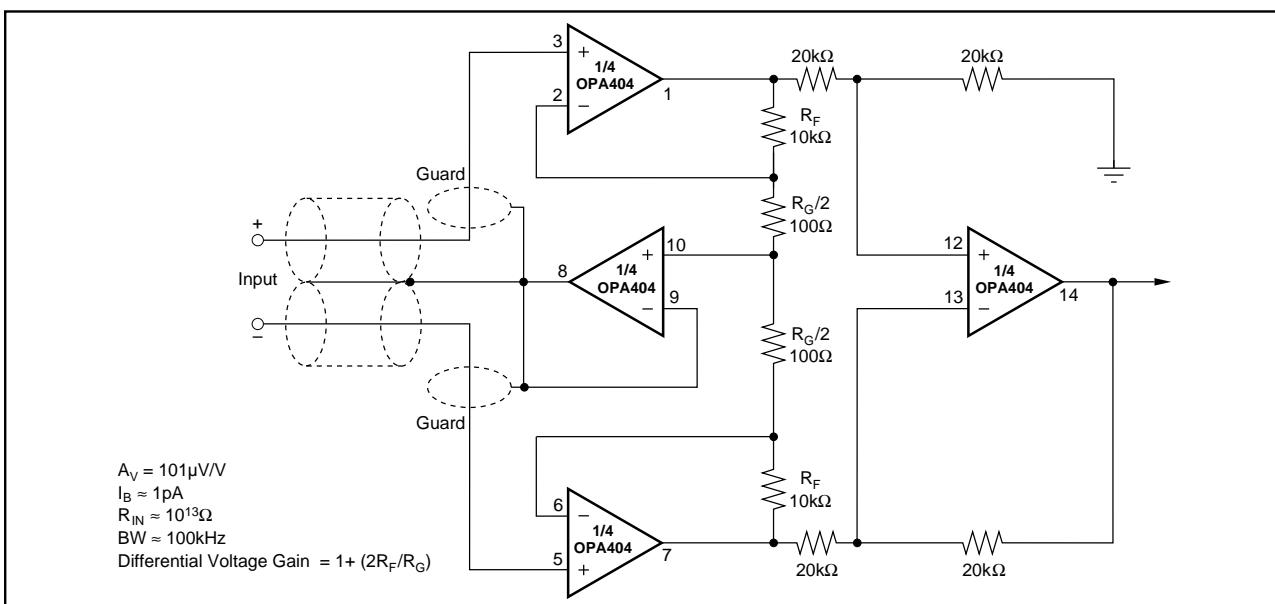


FIGURE 9. FET Instrumentation Amplifier with Shield Driver.

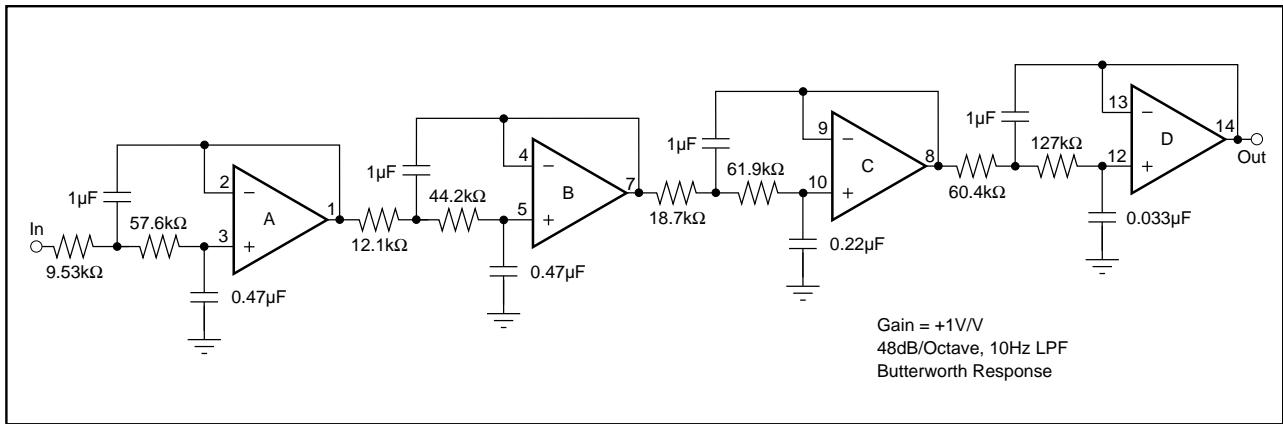


FIGURE 10. 8-Pole 10Hz Low-Pass Filter.

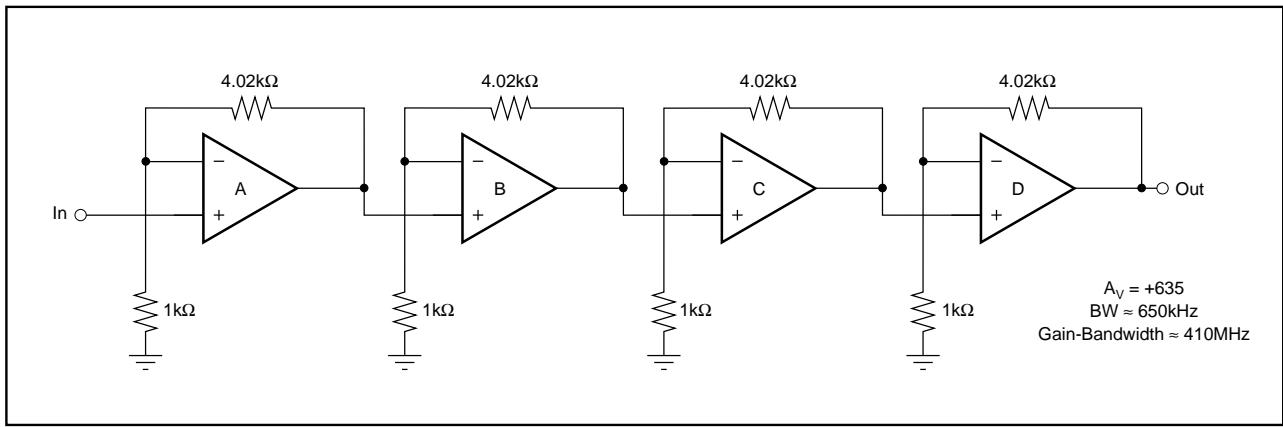


FIGURE 11. Wide-Band Amplifier.

PACKAGING INFORMATION

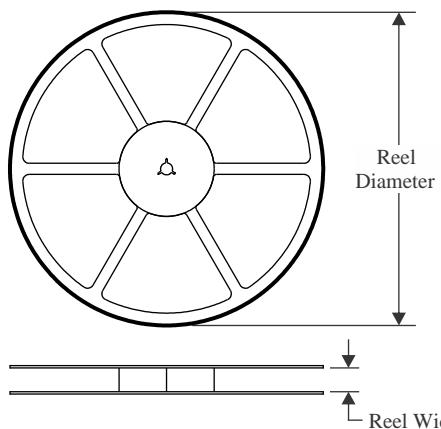
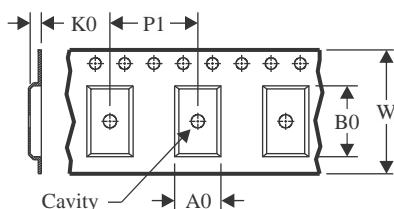
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
OPA404AG	Last Time Buy	Production	CDIP SB (JD) 14	24 TUBE	Yes	Call TI	N/A for Pkg Type	-	OPA404AG
OPA404AG.A	NRND	Production	CDIP SB (JD) 14	24 TUBE	Yes	Call TI	N/A for Pkg Type	0 to 70	OPA404AG
OPA404BG	Last Time Buy	Production	CDIP SB (JD) 14	24 TUBE	Yes	Call TI	N/A for Pkg Type	-	OPA404BG
OPA404BG.A	NRND	Production	CDIP SB (JD) 14	24 TUBE	Yes	Call TI	N/A for Pkg Type	0 to 70	OPA404BG
OPA404KP	Last Time Buy	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-	OPA404KP
OPA404KP.A	NRND	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	OPA404KP
OPA404KPG4	NRND	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	See OPA404KP	OPA404KP
OPA404KU	Last Time Buy	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAUAG	Level-3-260C-168 HR	0 to 70	OPA404KU
OPA404KU.A	NRND	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAUAG	Level-3-260C-168 HR	0 to 70	OPA404KU
OPA404KU/1K	Last Time Buy	Production	SOIC (DW) 16	1000 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	0 to 70	OPA404KU
OPA404KU/1K.A	NRND	Production	SOIC (DW) 16	1000 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	0 to 70	OPA404KU
OPA404SG	Last Time Buy	Production	CDIP SB (JD) 14	24 TUBE	Yes	AU	N/A for Pkg Type	-	OPA404SG
OPA404SG.A	NRND	Production	CDIP SB (JD) 14	24 TUBE	Yes	AU	N/A for Pkg Type	0 to 70	OPA404SG

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

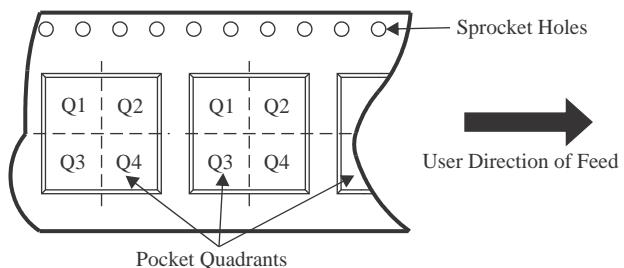
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

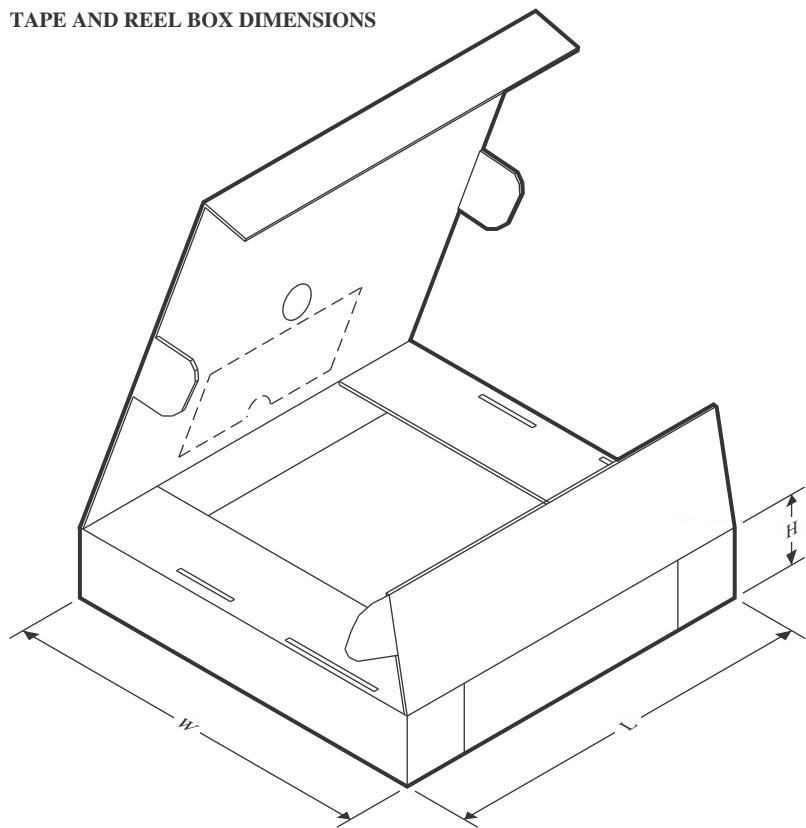


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

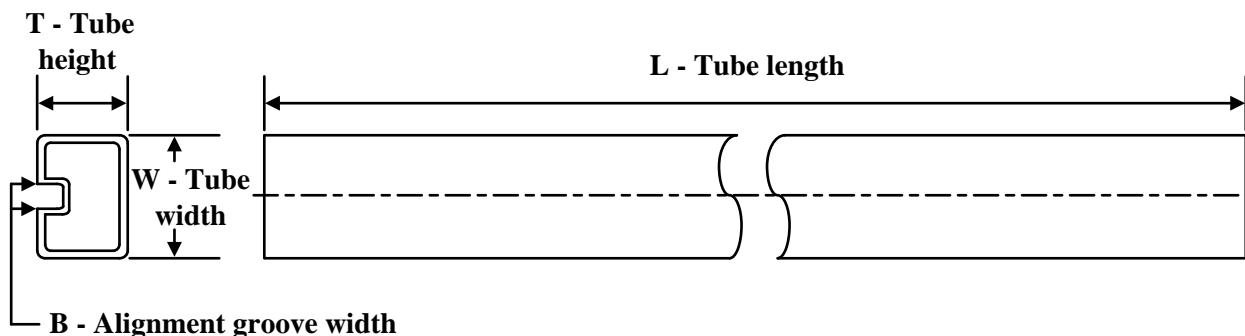
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA404KU/1K	SOIC	DW	16	1000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA404KU/1K	SOIC	DW	16	1000	353.0	353.0	32.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
OPA404AG	JD	CDIP SB	14	24	506.98	15.24	12290	NA
OPA404AG.A	JD	CDIP SB	14	24	506.98	15.24	12290	NA
OPA404BG	JD	CDIP SB	14	24	506.98	15.24	12290	NA
OPA404BG.A	JD	CDIP SB	14	24	506.98	15.24	12290	NA
OPA404KP	N	PDIP	14	25	506	13.97	11230	4.32
OPA404KP.A	N	PDIP	14	25	506	13.97	11230	4.32
OPA404KPG4	N	PDIP	14	25	506	13.97	11230	4.32
OPA404KU	DW	SOIC	16	40	507	12.83	5080	6.6
OPA404KU.A	DW	SOIC	16	40	507	12.83	5080	6.6
OPA404SG	JD	CDIP SB	14	24	506.98	15.24	12290	NA
OPA404SG.A	JD	CDIP SB	14	24	506.98	15.24	12290	NA

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025