

TLV3604, TLV3605, TLV3607 800ps High-Speed RRI Comparators with LVDS Outputs

1 Features

- Low propagation delay: 800ps
- Low overdrive dispersion: 350ps
- Quiescent current: 12.1mA
- High toggle frequency: 1.5GHz / 3.0Gbps
- Narrow pulse width detection capability: 600ps
- LVDS output
- Supply range: 2.4V to 5.5V
- Input common-mode range extends 200mV beyond both rails
- Low input offset voltage: $\pm 5\text{mV}$
- Single and dual channel options

2 Applications

- Distance sensing in LIDAR
- Time-of-Flight sensors
- High speed trigger function in oscilloscope and logic analyzer
- High speed differential line receiver
- Drone vision

3 Description

The TLV3604, TLV3605 (single channel), and TLV3607 (dual channel) are 800ps, high-speed comparators with LVDS outputs and rail-to-rail inputs. These features, along with an operating voltage range of 2.4V to 5.5V and a high toggle frequency of 3Gbps, make them well suited for LIDAR, clock and data recovery applications, and test and measurement systems.

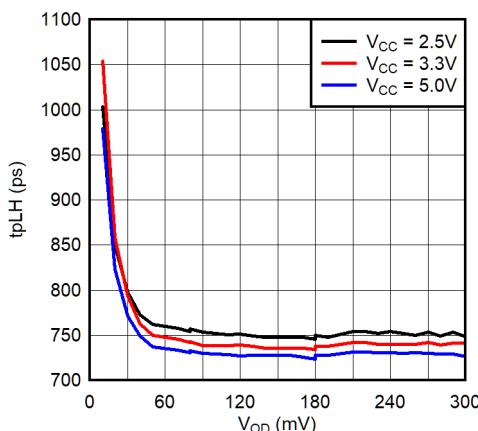
Likewise, the TLV3604, TLV3605 and TLV3607 have strong input overdrive performance of 350ps and are

able to detect narrow pulse widths of just 600ps. This combination of low variation in propagation delay due to input overdrive and the ability to detect narrow pulses improve system performance and extend distance range in Time-of-Flight (ToF) applications.

The Low-Voltage-Differential-Signal (LVDS) output of the TLV3604, TLV3605, and TLV3607 also helps increase data throughput and optimizes power consumption. The complementary outputs reduce EMI by suppressing common mode noise on each output. The LVDS output is designed to drive and interface directly with downstream devices that accept a standard LVDS input, such as high-speed FPGAs and CPUs.


The TLV3604 is in a tiny 6 pin SC-70 package, which makes it easier for space sensitive applications such as an optical sensor module. The TLV3605 (single) and TLV3607 (dual) maintain the same performance as the TLV3604, and offer adjustable hysteresis control, shutdown, and latching features in 12 pin QFN and 16 pin WQFN packages, making them excellent choices for test and measurement applications.

Device Information


PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM) ⁽²⁾
TLV3604	SC70 (6)	1.25mm \times 2.00mm
TLV3605	QFN (12)	3.00mm \times 3.00mm
TLV3607	WQFN (16)	4.00mm \times 4.00mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

(2) The package size (length \times width) is a nominal value and includes pins, where applicable.

Functional Block Diagram

TpLH v. Overdrive Dispersion

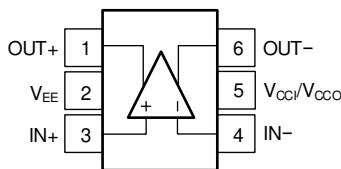
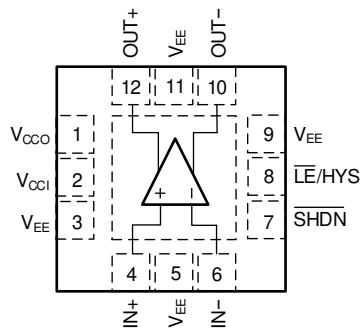

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

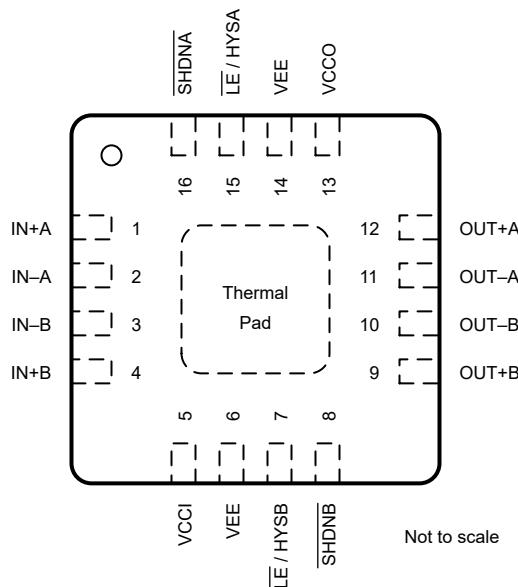
Table of Contents


1 Features	1	6.3 Feature Description.....	13
2 Applications	1	6.4 Device Functional Modes.....	13
3 Description	1	7 Application and Implementation	14
4 Pin Configuration and Functions	3	7.1 Application Information.....	14
Pin Configurations: TLV3604 and TLV3605.....	3	7.2 Typical Application.....	16
4.1 Pin Configuration: TLV3607.....	4	7.3 Power Supply Recommendations.....	19
5 Specifications	5	7.4 Layout.....	19
5.1 Absolute Maximum Ratings.....	5	8 Device and Documentation Support	21
5.2 ESD Ratings.....	5	8.1 Device Support.....	21
5.3 Recommended Operating Conditions.....	5	8.2 Receiving Notification of Documentation Updates.....	21
5.4 Thermal Information.....	6	8.3 Support Resources.....	21
5.5 Electrical Characteristics ($V_{CCI} = V_{CCO} = 2.5V$ to 5V).....	7	8.4 Trademarks.....	21
5.6 Typical Characteristics.....	9	8.5 Electrostatic Discharge Caution.....	21
6 Detailed Description	13	8.6 Glossary.....	21
6.1 Overview.....	13	9 Revision History	21
6.2 Functional Block Diagram.....	13	10 Mechanical, Packaging, and Orderable Information	22

4 Pin Configuration and Functions

Pin Configurations: TLV3604 and TLV3605

**Figure 4-1. DCK Package
6-Pin SC70
Top View**



**Figure 4-2. RVK Package
12-Pin QFN
Top View**

Table 4-1. Pin Functions: TLV3604 and TLV3605

NAME	PIN		I/O	DESCRIPTION
	TLV3604	TLV3605		
IN+	3	4	I	Non-inverting input
IN-	4	6	I	Inverting input
OUT+	1	12	O	Non-inverting output
OUT-	6	10	O	Inverting output
VEE	2	3, 5, 9, 11	I	Negative power supply
VCCI	5	2	I	Positive input section power supply
VCCO	5	1	I	Positive output section power supply
SHDN	-	7	I	Shutdown control, active low
LE/HYS	-	8	I	Adjustable hysteresis control and latch

4.1 Pin Configuration: TLV3607

**Figure 4-3. RTE Package
16-Pin WQFN with Exposed Thermal Pad
Top View**

Table 4-2. Pin Functions: TLV3607

PIN		I/O	DESCRIPTION
NAME	TLV3607		
IN+A	1	I	Channel A non-inverting input
IN-A	2	I	Channel A inverting input
IN-B	3	I	Channel B inverting input
IN+B	4	I	Channel B non-inverting input
OUT+A	12	O	Channel A non-inverting output
OUT-A	11	O	Channel A inverting output
OUT-B	10	O	Channel B inverting output
OUT+B	9	O	Channel B non-inverting output
V _{EE}	6, 14	I	Negative power supply
V _{CCI}	5	I	Positive input section power supply
V _{CCO}	13	I	Positive output section power supply
SHDNA	16	I	Channel A shutdown control (active low)
SHDNB	8	I	Channel B shutdown control (active low)
LE/HYSA	15	I	Channel A latch enable (active low) and adjustable hysteresis control
LE/HYSB	7	I	Channel B latch enable (active low) and adjustable hysteresis control

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Input Supply Voltage: $V_{CCI} - V_{EE}$	-0.3	6	V
Output Supply Voltage: $V_{CCO} - V_{EE}$	-0.3	6	V
Supply Voltage Difference: $V_{CCI} - V_{CCO}$	-6	6	V
Input Voltage (IN+, IN-) ⁽²⁾	$V_{EE} - 0.3$	$V_{CCI} + 0.3$	V
Differential Input Voltage ($V_{DI} = IN+, IN-$)	$-(V_{CCI} + 0.3)$	$+(V_{CCI} + 0.3)$	V
Output Voltage (OUT+, OUT-) ⁽³⁾	$V_{EE} - 0.3$	$V_{CCO} + 0.3$	V
Shutdown Enable (SHDN)	$V_{EE} - 0.3$	$V_{CCO} + 0.3$	V
Latch and Hysteresis Control (LE/HYS)	$V_{EE} - 0.3$	$V_{CCO} + 0.3$	V
Current into Input pins (IN+, IN-, SHDN, LE/HYS) ⁽²⁾	-10	+10	mA
Current into Output pins (OUT+, OUT-) ⁽³⁾	-10	+10	mA
Junction temperature, T_J		150	°C
Storage temperature, T_{stg}	-65	150	°C

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails or 6V, whichever is lower, must be current-limited to 10mA or less.
- (3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3V beyond the supply rails must be current-limited to 10mA or less.

5.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	TLV3604 Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	V
		TLV3605, TLV3607 Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Input Supply Voltage: $V_{CCI} - V_{EE}$	2.4	5.5	V
Output Supply Voltage: $V_{CCO} - V_{EE}$	2.4	5.5	V
Input Voltage Range (IN+, IN-)	$V_{EE} - 0.3$	$V_{CCI} + 0.3$	V
Shutdown Enable (SHDN)	$V_{EE} - 0.3$	$V_{CCO} + 0.3$	V
Latch and Hysteresis Control (LE/HYS)	$V_{EE} - 0.3$	$V_{CCO} + 0.3$	V
Ambient temperature, T_A	-40	125	°C

5.4 Thermal Information

THERMAL METRIC		TLV3604	TLV3605	TLV3607	UNIT
		DCK (SC70)	RVK (WQFN)	RTE (WQFN)	
		6 PINS	12 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	170.3	85.8	72.1	°C/W
$R_{\theta JC}$ (top)	Junction-to-case (top) thermal resistance	134.5	71.6	53.8	°C/W
$R_{\theta JC}$ (bottom)	Junction-to-case (bottom) thermal resistance	N/A	15.1	35.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	63.3	52.7	45.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	43.7	4.1	2.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	63.1	52.7	45.9	°C/W

5.5 Electrical Characteristics ($V_{CCI} = V_{CCO} = 2.5V$ to $5V$)

$V_{CCI} = V_{CCO} = 2.5$ to $5V$, $V_{EE} = 0V$, $V_{CM} = V_{EE} + 300mV$, $R_{LOAD} = 100\Omega$, $C_L = 1pF$ probe capacitance, typical at $T_A = 25^\circ C$ (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Input Characteristics					
V_{IO} ⁽¹⁾	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	-5	± 0.5	5	mV
V_{CM}	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	$V_{EE} - 0.2$	$V_{CCI} + 0.2$		V
V_{HYST}	Input hysteresis voltage		0		mV
C_{IN}	Input capacitance		1		pF
R_{DM}	Input differential mode resistance		67		k Ω
R_{CM}	Input common mode resistance		5		M Ω
I_B	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	-5	-1	5	μA
I_{OS}	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	-1		1	μA
CMRR ⁽¹⁾	Common-mode rejection ratio	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $V_{CM} = V_{EE} - 0.2V$ to $V_{CCI} + 0.2V$, $T_A = -40^\circ C$ to $+125^\circ C$	50	80	dB
PSRR ⁽¹⁾	Power-supply rejection ratio	$V_{CCI} = V_{CCO} = 2.5V$ to $5V$, $T_A = -40^\circ C$ to $+125^\circ C$	55	80	dB
DC Output Characteristics					
V_{OCM}	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	1.125	1.2	1.375	V
ΔV_{OCM}	Output common mode voltage mismatch			50	mV
V_{OCM_PP}	Peak-to-Peak output common mode voltage		20		mV _{pp}
V_{OD}	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	250	350	450	mV
ΔV_{OD}	Differential output voltage mismatch	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$		10	mV
Power Supply					
I_{CC} (TLV3604)	Total quiescent current	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	12.1	16.5	mA
I_{CCI} (TLV3605)	Input stage quiescent current	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	7.5	10.5	mA
I_{CCO} (TLV3605)	Output stage quiescent current	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	5.2	7.0	mA
I_{CCI} (TLV3607)	Input stage quiescent current per channel	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	7.5	10.5	mA
I_{CCO} (TLV3607)	Output stage quiescent current per channel	$V_{CCI} = V_{CCO} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	5.2	7.0	mA
AC Characteristics					
t_{PD}	Propagation delay	$V_{OVERDRIVE} = V_{UNDERDRIVE} = 50mV$, 50MHz Squarewave	800		ps
t_{PD_SKEW}	Propagation delay skew	$V_{OVERDRIVE} = V_{UNDERDRIVE} = 50mV$, 50MHz Squarewave	40		ps
Δt_{PD} (TLV3607 only)	Channel-to-channel propagation delay skew ⁽²⁾	$V_{OVERDRIVE} = V_{UNDERDRIVE} = 50mV$, 50MHz Squarewave	10		ps
$t_{CM_DISPERSION}$	Common dispersion	V_{CM} varied from V_{EE} to V_{CCI}	200		ps
$t_{OD_DISPERSION}$	Overdrive dispersion	Overdrive varied from 10mV to 250mV	350		ps
$t_{UD_DISPERSION}$	Underdrive dispersion	Underdrive varied from 10mV to 250mV	200		ps
t_R	Rise time	20% to 80%	350		ps
t_F	Fall time	80% to 20%	350		ps
f_{TOGGLE}	Input toggle frequency	$V_{IN} = 200mV_{pp}$ Sine Wave, 50% Output swing	1.5		GHz

5.5 Electrical Characteristics ($V_{CC1} = V_{CC0} = 2.5V$ to $5V$) (continued)

$V_{CC1} = V_{CC0} = 2.5$ to $5V$, $V_{EE} = 0V$, $V_{CM} = V_{EE} + 300mV$, $R_{LOAD} = 100\Omega$, $C_L = 1pF$ probe capacitance, typical at $T_A = 25^\circ C$ (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TR	Toggle rate	$V_{IN} = 200mV_{PP}$ Sine Wave, 50% Output swing		3.0	Gbps
f_{TOGGLE} (TLV3607 only)	Input toggle frequency	$V_{IN} = 200mV_{PP}$ Sine Wave, 50% Output swing		1.3	GHz
TR (TLV3607 only)	Toggle rate	$V_{IN} = 200mV_{PP}$ Sine Wave, 50% Output swing		2.6	Gbps
PulseWidth	Minimum allowed input pulse width	$V_{OVERDRIVE} = V_{UNDERDRIVE} = 50mV$ $PW_{OUT} = 90\%$ of PW_{IN}		600	ps

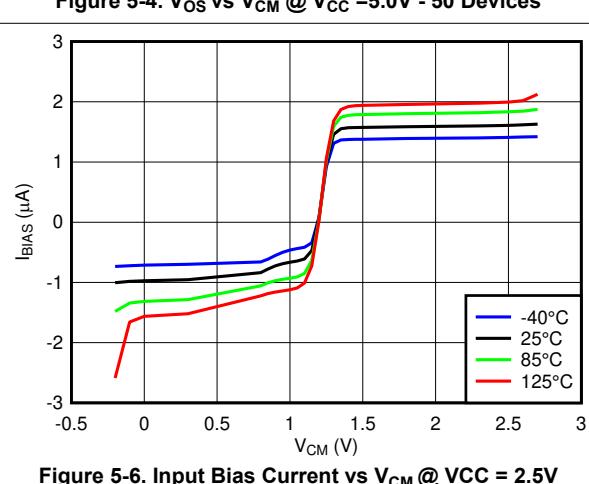
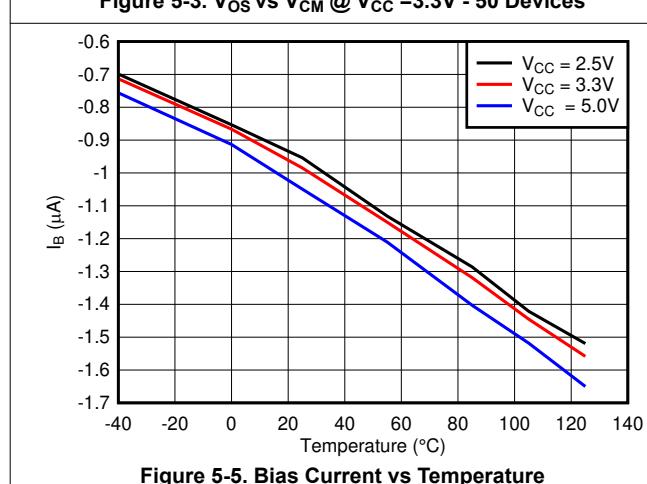
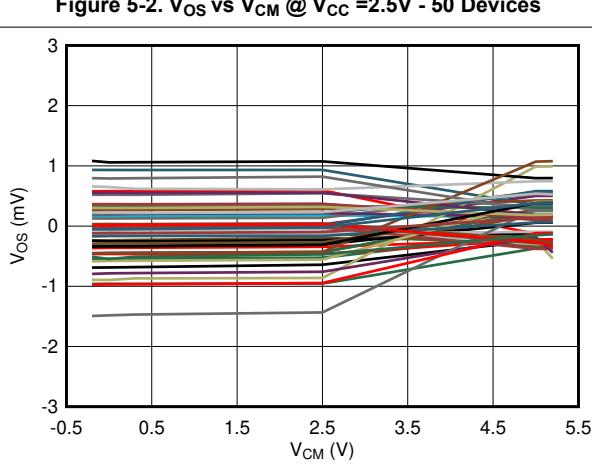
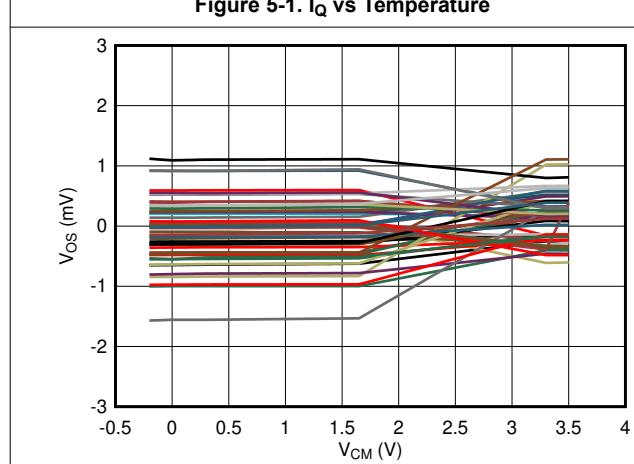
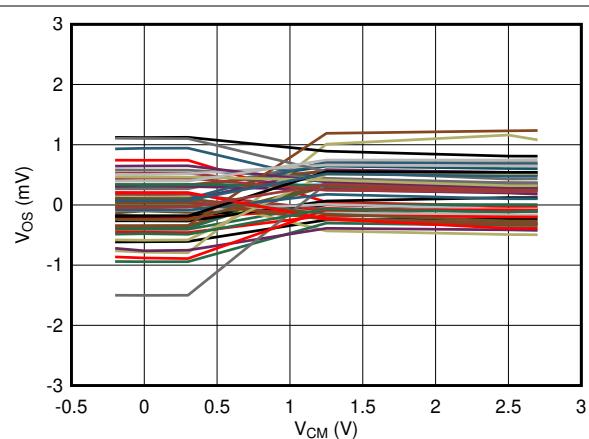
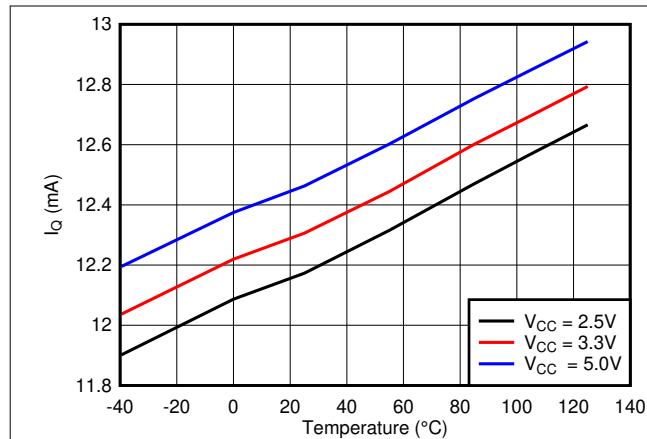
Latching/Adjustable Hysteresis (TLV3605 and TLV3607)

V_{HYST}	Input hysteresis voltage	$R_{HYST} = \text{Floating}$	0	mV	
V_{HYST}	Input hysteresis voltage	$R_{HYST} = 150k\Omega$	30	mV	
V_{HYST}	Input hysteresis voltage	$R_{HYST} = 56k\Omega$	60	mV	
V_{IH_LE}	\overline{LE} pin input high level	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	1.5	V	
V_{IL_LE}	\overline{LE} pin input low level	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$		0.35	V
I_{IH_LE}	\overline{LE} pin input leakage current	$V_{LE} = V_{CC0}$ $T_A = -40^\circ C$ to $+125^\circ C$		3.5	uA
I_{IL_LE}	\overline{LE} pin input leakage current	$V_{LE} = V_{EE}$, $T_A = -40^\circ C$ to $+125^\circ C$		40	uA
t_{SETUP}	Latch setup time		-3	ns	
t_{HOLD}	Latch hold time		6	ns	
t_{PL}	Latch to Q and \overline{Q} delay		4	ns	

Shutdown Characteristics (TLV3605 and TLV3607)

V_{IH_SD}	\overline{SHDN} pin input high level	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$	1.5	V	
V_{IL_SD}	\overline{SHDN} pin input low level	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$		0.4	V
I_{IH_SD}	\overline{SHDN} pin input leakage current	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $V_{SD} = V_{CC0}$, $T_A = -40^\circ C$ to $+125^\circ C$		2	uA
I_{IL_SD}	\overline{SHDN} pin input leakage current	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $V_{SD} = V_{EE}$, $T_A = -40^\circ C$ to $+125^\circ C$		30	uA
I_{CC1_SD}	Input stage quiescent current per channel in Shutdown mode	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $V_{LE} = V_{CC0}$ $T_A = -40^\circ C$ to $+125^\circ C$		1.5	mA
I_{CC0_SD}	Output stage quiescent current per channel in Shutdown mode	$V_{CC1} = V_{CC0} = 2.5V$ and $5V$ $T_A = -40^\circ C$ to $+125^\circ C$		100	uA
t_{SLEEP}	Sleep time from Active to Shutdown mode	10% output swing	8	ns	
t_{WAKEUP}	Wake up time from Shutdown mode	$V_{OD} = 50mV$, output valid	100	ns	

- (1) For TLV3605 and TLV3607, the V_{IO} is tested with $R_{HYST} = 150k\Omega$
(2) Differential propagation delay is defined as the larger of the two:







$$\Delta t_{PDLH} = t_{PDLH}(\text{MAX}) - t_{PDLH}(\text{MIN})$$

$$\Delta t_{PDHL} = t_{PDHL}(\text{MAX}) - t_{PDHL}(\text{MIN})$$

where (MAX) and (MIN) denote the maximum and minimum values of a given measurement across the different comparator channels.

5.6 Typical Characteristics

At $T_A = 25^\circ\text{C}$, $V_{CC1}/V_{CC0} = 2.5\text{V}$ to 5.0V , $V_{CM} = 0.3\text{V}$, and input overdrive/underdrive = 50mV unless otherwise noted.

5.6 Typical Characteristics (continued)

At $T_A = 25^\circ\text{C}$, $V_{\text{CC1}}/V_{\text{CC0}} = 2.5\text{V}$ to 5.0V , $V_{\text{CM}} = 0.3\text{V}$, and input overdrive/underdrive = 50mV unless otherwise noted.

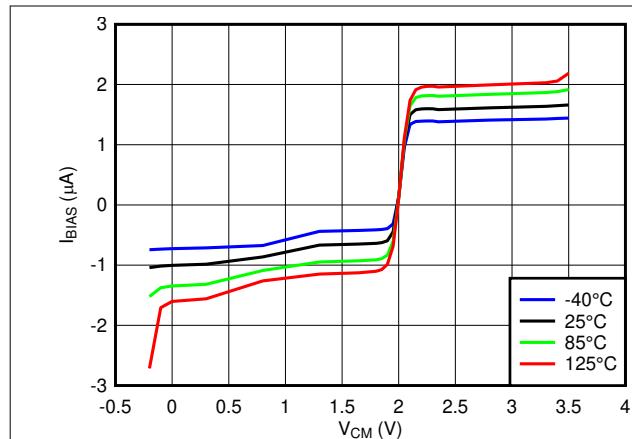


Figure 5-7. Input Bias Current vs V_{CM} @ $V_{\text{CC}} = 3.3\text{V}$

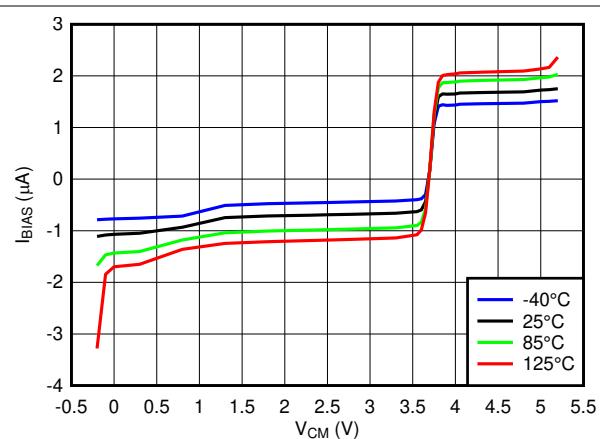


Figure 5-8. Input Bias Current vs V_{CM} @ $V_{\text{CC}} = 5.0\text{V}$

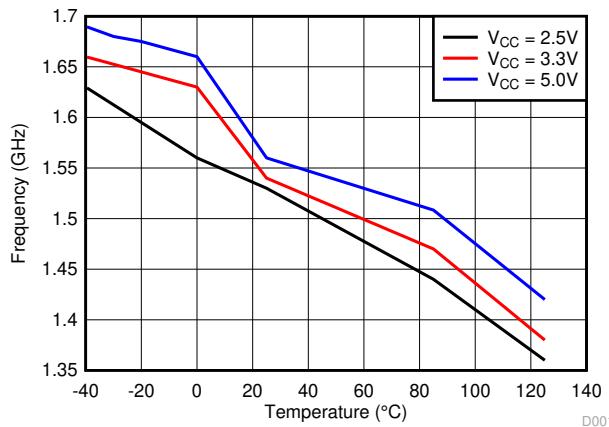


Figure 5-9. FToggle vs Temperature

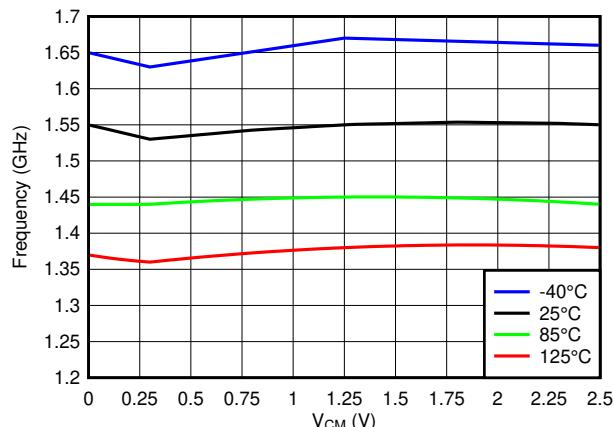


Figure 5-10. Ftoggle vs V_{CM} @ $V_{\text{CC}} = 2.5\text{V}$

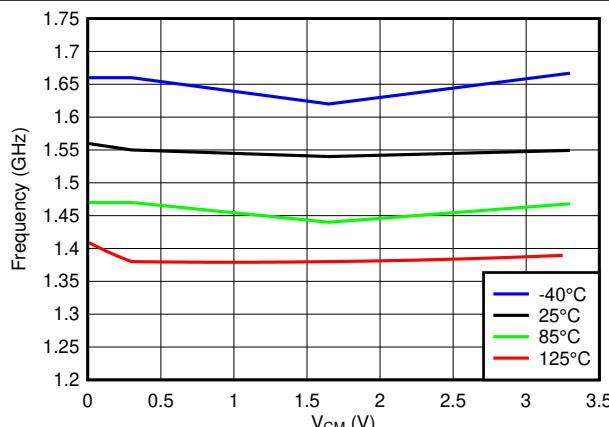


Figure 5-11. Ftoggle vs V_{CM} @ $V_{\text{CC}} = 3.3\text{V}$

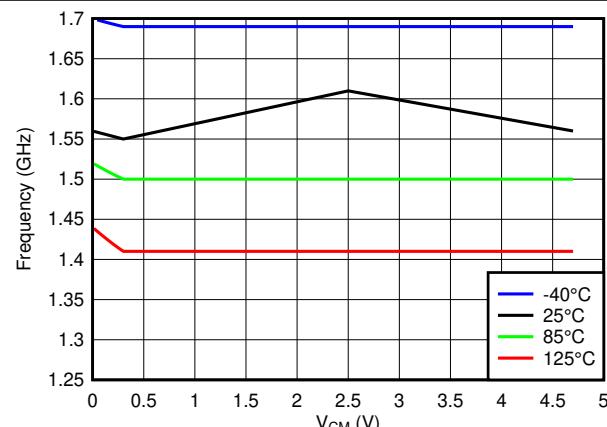


Figure 5-12. Ftoggle vs V_{CM} @ $V_{\text{CC}} = 5.0\text{V}$

5.6 Typical Characteristics (continued)

At $T_A = 25^\circ\text{C}$, $V_{\text{CC1}}/V_{\text{CC0}} = 2.5\text{V}$ to 5.0V , $V_{\text{CM}} = 0.3\text{V}$, and input overdrive/underdrive = 50mV unless otherwise noted.

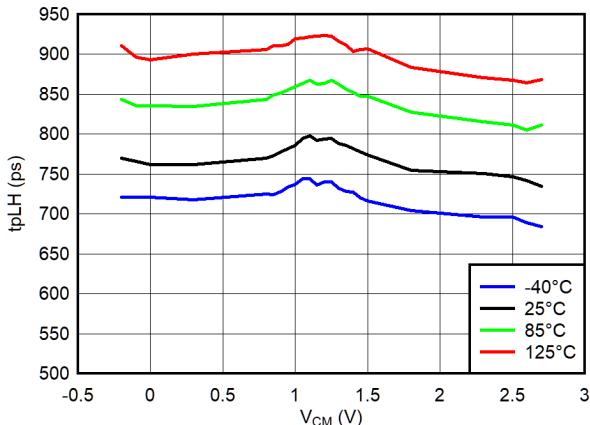


Figure 5-13. T_{PLH} vs V_{CM} @ $V_{\text{CC}} = 2.5\text{V}$

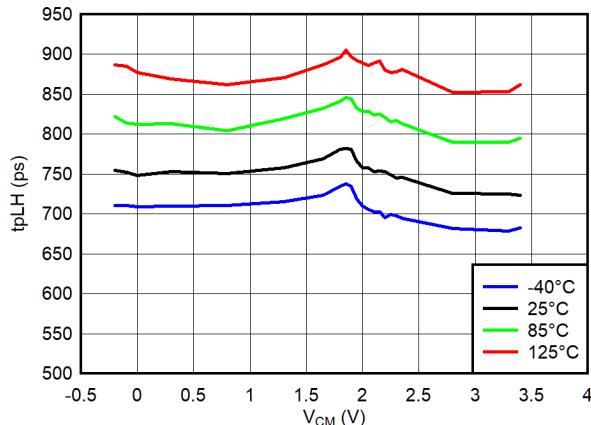


Figure 5-14. T_{PLH} vs V_{CM} @ $V_{\text{CC}} = 3.3\text{V}$

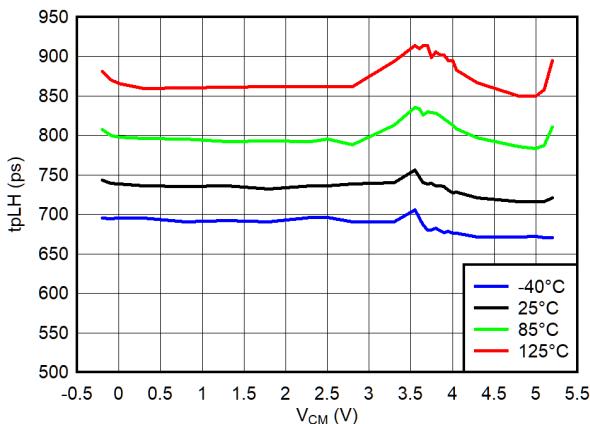


Figure 5-15. T_{PLH} vs V_{CM} @ $V_{\text{CC}} = 5.0\text{V}$

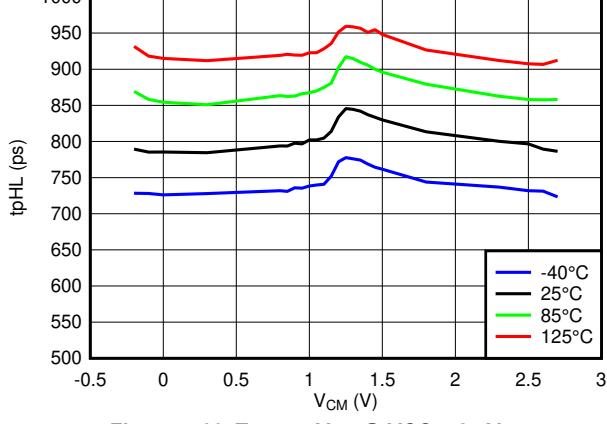


Figure 5-16. T_{PHL} vs V_{CM} @ $V_{\text{CC}} = 2.5\text{V}$

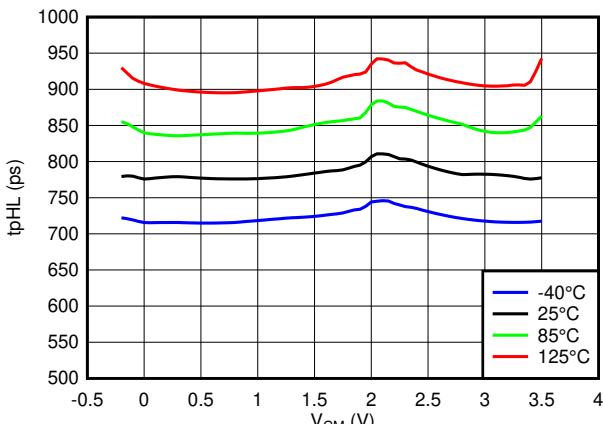


Figure 5-17. T_{PHL} vs V_{CM} @ $V_{\text{CC}} = 3.3\text{V}$

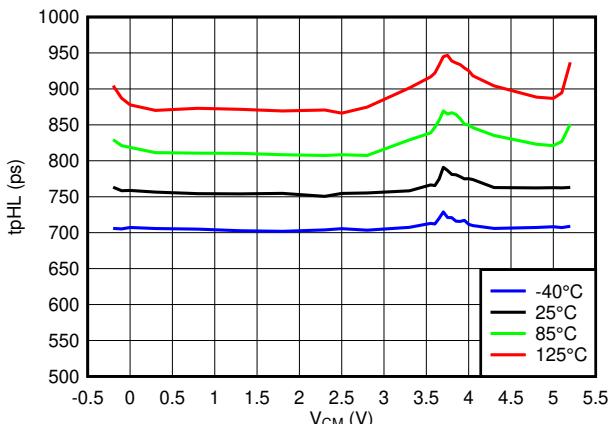


Figure 5-18. T_{PHL} vs V_{CM} @ $V_{\text{CC}} = 5.0\text{V}$

5.6 Typical Characteristics (continued)

At $T_A = 25^\circ\text{C}$, $V_{\text{CC1}}/V_{\text{CC0}} = 2.5\text{V}$ to 5.0V , $V_{\text{CM}} = 0.3\text{V}$, and input overdrive/underdrive = 50mV unless otherwise noted.

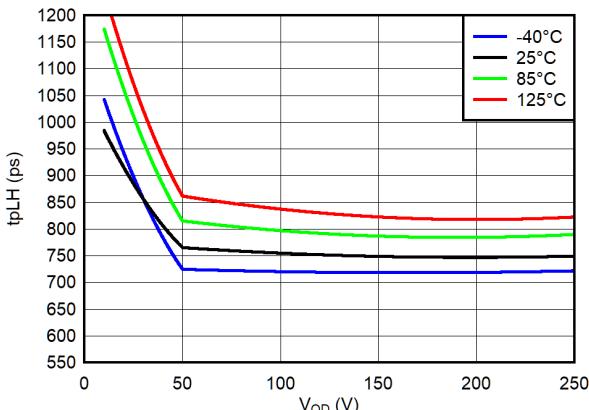


Figure 5-19. T_{PLH} vs Input Overdrive @ $V_{\text{CC}} = 2.5\text{V}$

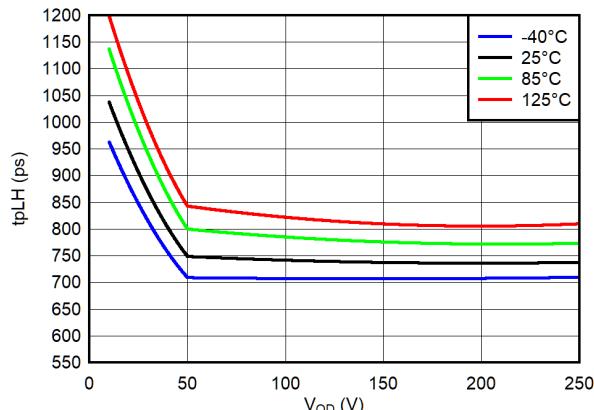


Figure 5-20. T_{PLH} vs Input Overdrive @ $V_{\text{CC}} = 3.3\text{V}$

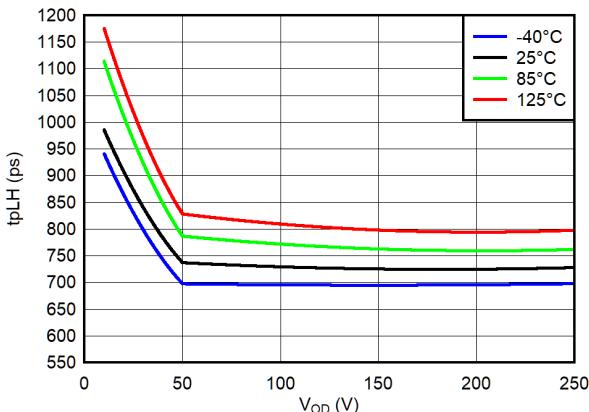


Figure 5-21. T_{PLH} vs Input Overdrive @ $V_{\text{CC}} = 5.0\text{V}$

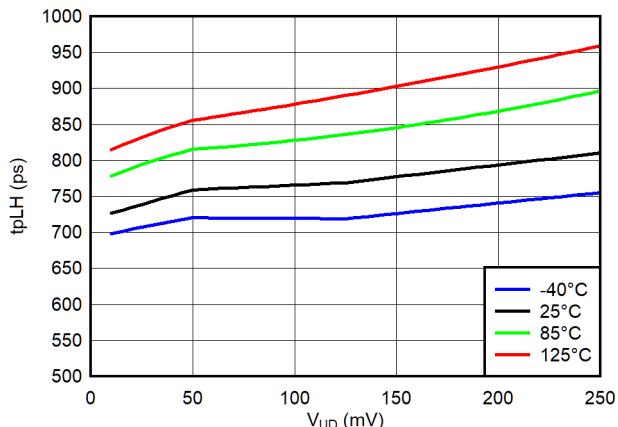


Figure 5-22. T_{PLH} vs Input Underdrive @ $V_{\text{CC}} = 2.5\text{V}$

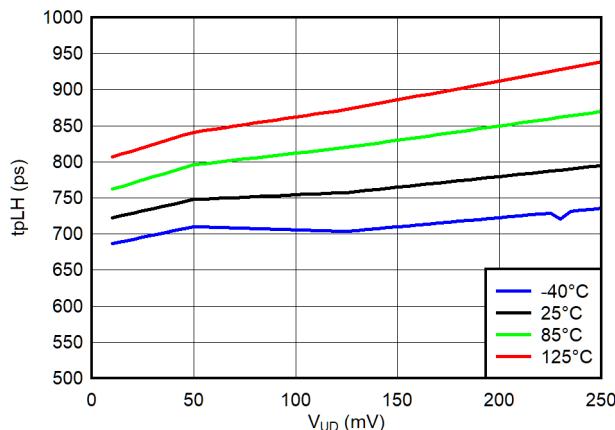
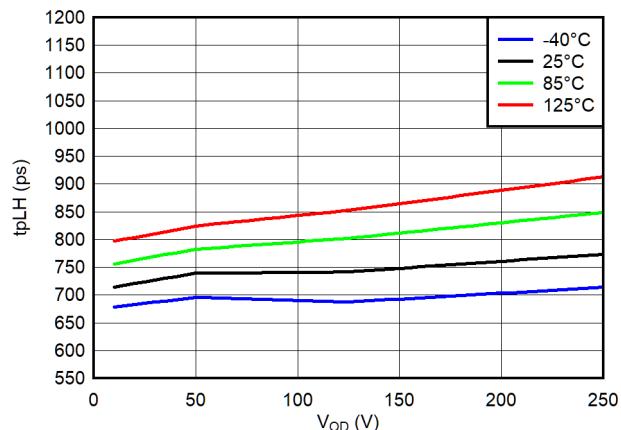
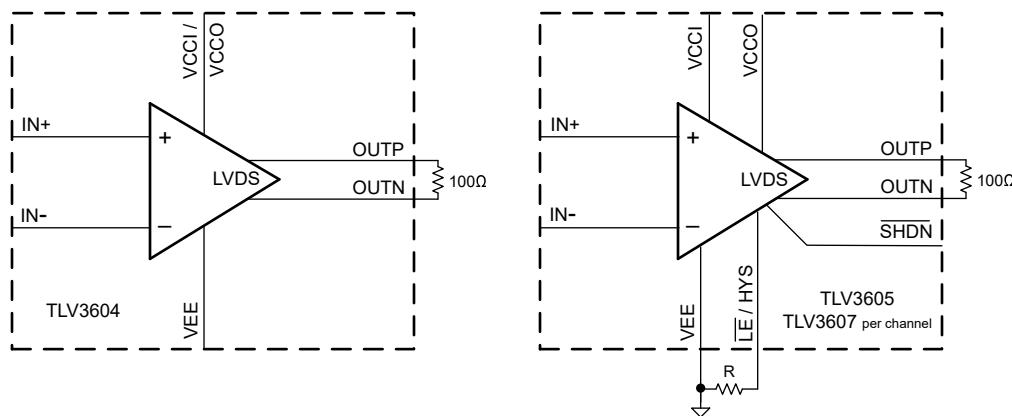


Figure 5-23. T_{PLH} vs Input Underdrive @ $V_{\text{CC}} = 3.3\text{V}$




Figure 5-24. T_{PLH} vs Input Underdrive @ $V_{\text{CC}} = 5.0\text{V}$

6 Detailed Description

6.1 Overview

The TLV3604, TLV3605, and TLV3607 are 800ps, high-speed comparators with LVDS outputs and rail-to-rail inputs. These features, along with an operating voltage range of 2.4V to 5.5V and a high toggle frequency of 3Gbps, make the TLV3604, TLV3605, and TLV3607 well suited for LIDAR, clock and data recovery applications, and test and measurement systems.

6.2 Functional Block Diagram

6.3 Feature Description

The TLV3604 and TLV3605 (single channel) and TLV3607 (dual channel) are high-speed comparators with rail-to-rail inputs and LVDS outputs. The rail-to-rail input stage is capable of operating up to 200mV beyond each power supply rail with minimal input offset. The TLV3605 (single) and TLV3607 (dual) have similar performance as the TLV3604 while providing adjustable hysteresis, latching function, and shutdown mode.

6.4 Device Functional Modes

The TLV3604 has a single functional mode and is operational when the power supply voltage is greater than the minimum operating voltage. The TLV3605 and TLV3607 have an active and shutdown mode. The TLV3605 and TLV3607 are in shutdown mode when the SHDN pin is logic low. To allow for easy interface with 1.8V FPGAs and CPUs, the SHDN pin is 1.8V logic compliant and independent of the comparator power supply.

6.4.1 Rail-to-Rail Inputs

The TLV3604, TLV3605, and TLV3607 feature input stages capable of operating 200mV below or above the power supply rails, allowing for zero cross detection and maximizing input dynamic range. With low input offset voltage, the comparators improve system performance in high sensitivity signal detection.

6.4.2 LVDS Output

The TLV3604, TLV3605, and TLV3607 outputs are LVDS compliant. When the input of the downstream device is terminated with a 100Ω resistor, it provides a ±350mV LVDS swing. Fully differential outputs enable fast digital toggling and reduce EMI compared to single-ended output standards.

7 Application and Implementation

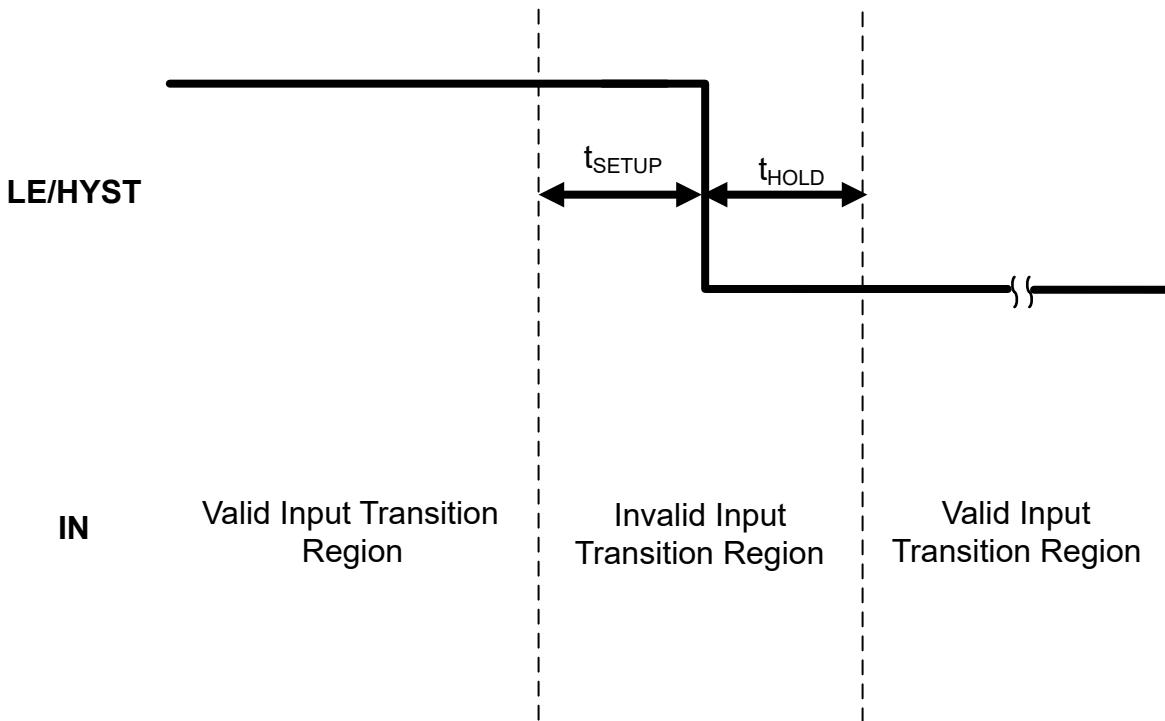
Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The TLV3604, TLV3605, and TLV3607 comparators feature rail-to-rail inputs and a LVDS output stage that is well-suited for high speed applications that require low power consumption. The 800ps propagation delay of the comparators improve performance and extend the range for applications involving optical reception, triggers for test and measurement systems, and transceivers that require a high speed signal to be carried over a certain distance.

7.1.1 Comparator Inputs


The TLV3604, TLV3605, and TLV3607 are rail-to-rail input comparators, with an input common-mode range that exceeds the supply rails by 200mV for both positive and negative supplies.

7.1.2 Capacitive Loads

Under reasonable capacitive loads, the device maintains specified propagation delay. However, excessive capacitive loading under high switching frequencies may increase supply current, propagation delay, or induce decreased slew rate.

7.1.3 Latch Functionality

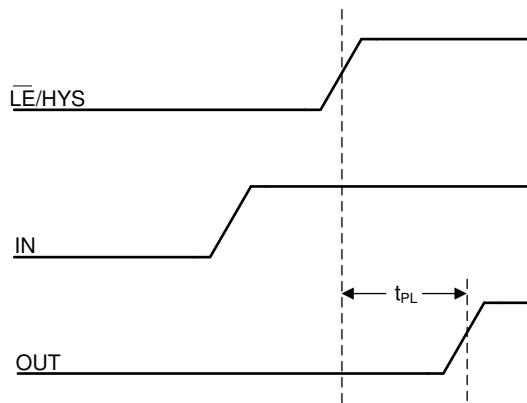
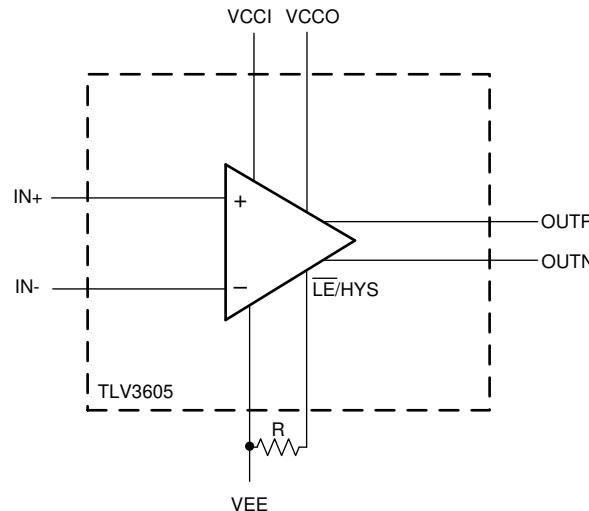

The latch pin for the TLV3605 and TLV3607 holds the output state of the device when the voltage at the LEB/HYST pin is less than 800mV above V_{EE} . This is particularly useful when the output state is intended to remain unchanged. An important consideration of the latch functionality is the latch hold time. Latch hold time is the minimum time (after the latch pin is asserted) required for properly latching the comparator output.

Figure 7-1. Valid Latch Diagram

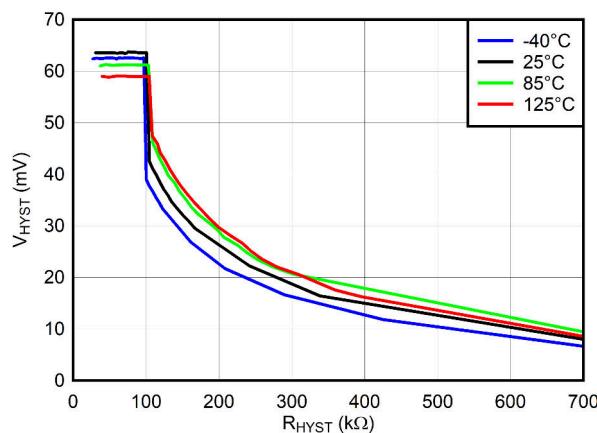
Likewise, latch setup time is defined as the time that the input must be stable before the latch pin is asserted low. The figure above illustrates when the input can transition for a valid latch. Note that the typical setup time in the EC table is negative; this is due to the internal trace delays of the LEB/HYST pin relative to the input pin trace delays.

A small delay in the output response is shown below when the TLV3605 and TLV3607 exits a latched output stage.

Figure 7-2. Latch Disable with Input Change


7.1.4 Adjustable Hysteresis

As a result of a comparator's high open loop gain, there is a small band of input differential voltage where the output can toggle back and forth between "logic high" and "logic low" states. This can cause design challenges for inputs with slow rise and fall times or systems with excessive noise.


These challenges can be overcome by adding hysteresis to the comparator. Since the TLV3604 does not have internal hysteresis, external hysteresis can be applied in the form of a positive feedback loop that adjusts the

trip point of the comparator depending on its current output state. See the Typical Application section for more details.

The TLV3605 and TLV3607 have a LEB/HYST pin that can be used to increase the internal hysteresis of the comparator. To change the internal hysteresis of the TLV3605 and TLV3607, connect a single resistor as shown in the [adjusting hysteresis figure](#) between the LEB/HYST pin and VEE. A curve of hysteresis versus resistance is provided below to provide guidance in setting the desired amount of hysteresis.

Figure 7-3. Adjusting Hysteresis with an External Resistor (R)

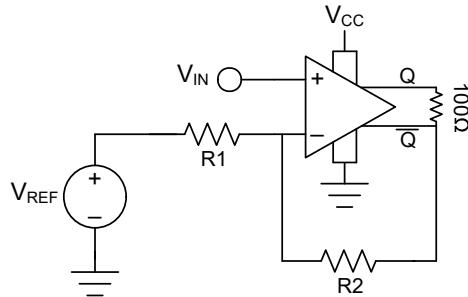


Figure 7-4. V_{HYST} (mV) vs R_{HYST} (kΩ), $V_{CC} = 3.3V$

7.2 Typical Application

7.2.1 Non-Inverting Comparator With Hysteresis

A way to implement external hysteresis is to add two resistors to the circuit: one in series between the reference voltage and the inverting pin, and another from the inverting pin to one of the differential output pins.

Figure 7-5. Non-Inverting Comparator with Hysteresis Circuit

7.2.1.1 Design Requirements

Table 7-1. Design Parameters

PARAMETER	VALUE
V_{HYS}	50mV
V_{REF}	2.5V
V_{T1}	2.34V
V_{T2}	2.29V
Q	1.375V
\bar{Q}	1.025V

7.2.1.2 Detailed Design Procedure

First, create an equation for V_T that covers both output voltages when the output is high or low.

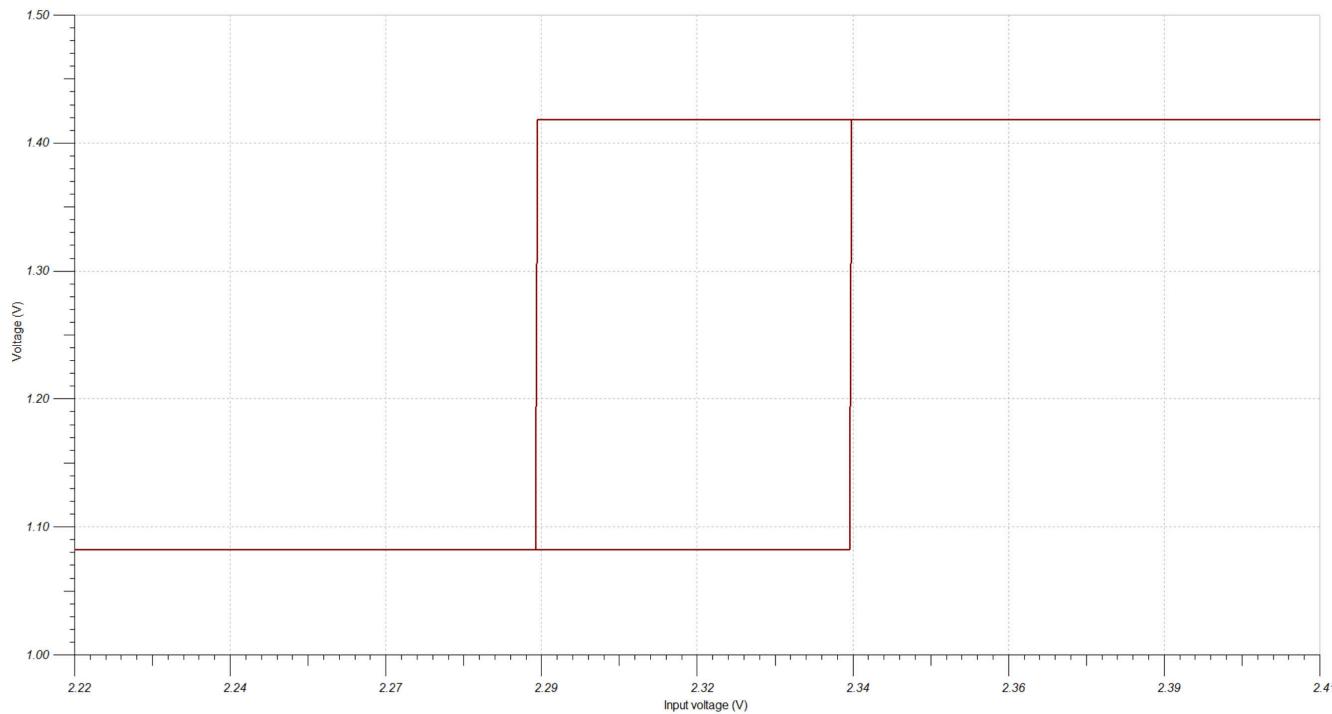
$$V_{T1} = \frac{V_{REF}R_2 + QR_1}{R_1+R_2} \quad (1)$$

$$V_{T2} = \frac{V_{REF}R_2 + \bar{Q}R_1}{R_1+R_2} \quad (2)$$

The hysteresis voltage in this network is equal to the difference in the two threshold voltage equations.

$$V_{HYS} = V_{T1} - V_{T2} \quad (3)$$

$$V_{HYS} = \frac{V_{REF}R_2 + QR_1}{R_1+R_2} - \frac{V_{REF}R_2 + \bar{Q}R_1}{R_1+R_2} \quad (4)$$


$$V_{HYS} = \frac{(Q - \bar{Q})R_1}{R_1+R_2} \quad (5)$$

$$V_{HYS} = \frac{V_{OP}R_1}{R_1+R_2} \quad (6)$$

Note that these equations do not take into account the effects of the internal hysteresis and offset voltage of the comparator. Design parameters need to be adjusted accordingly.

Select a value for R_2 . Plug in given values for V_{REF} , V_{T1} , V_{T2} , Q , and \bar{Q} , and solve for R_1 . For the given example, $R_2 = 50k\Omega$, and R_1 is solved as $= 8.3k\Omega$.

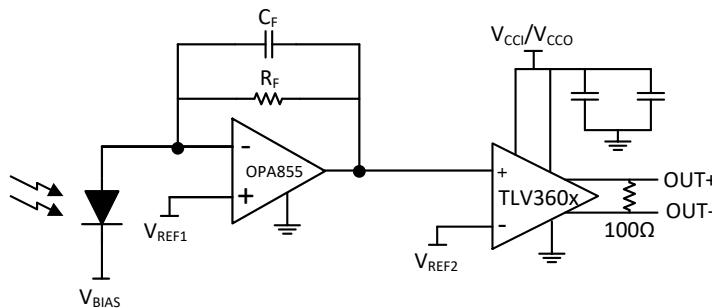

7.2.1.3 Application Performance Plots

Figure 7-6. Hysteresis Curve for LVDS Comparator

7.2.2 Optical Receiver

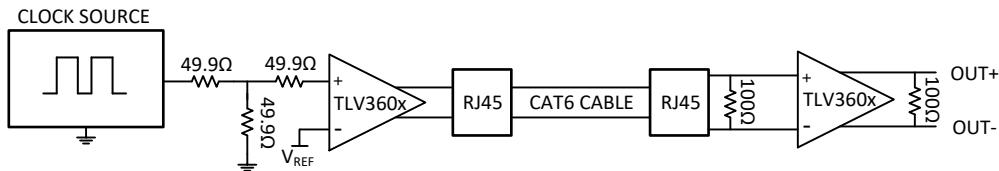

The TLV3604, TLV3605, and TLV3607 can be used in conjunction with a high performance amplifier such as the OPA855 to create an optical receiver as shown in the [Figure 7-7](#). The photo diode is connected to a bias voltage and is being driven with a pulsed laser. The OPA855 takes the current conducting through the diode and translates it into a voltage for a high speed comparator to detect. The TLV3604, TLV3605, and TLV3607 will then output the proper LVDS signal according to the threshold set (V_{REF2}).

Figure 7-7. Optical Receiver

7.2.3 Logic Clock Source to LVDS Transceiver

The [Figure 7-8](#) shows a logic clock source being terminated and driven with the TLV3604, TLV3605, and TLV3607 across a CAT6 Cable to receive an equivalent LVDS clock signal at the receiver end.

Figure 7-8. LVDS Clock Transceiver

7.2.4 External Trigger Function for Oscilloscopes

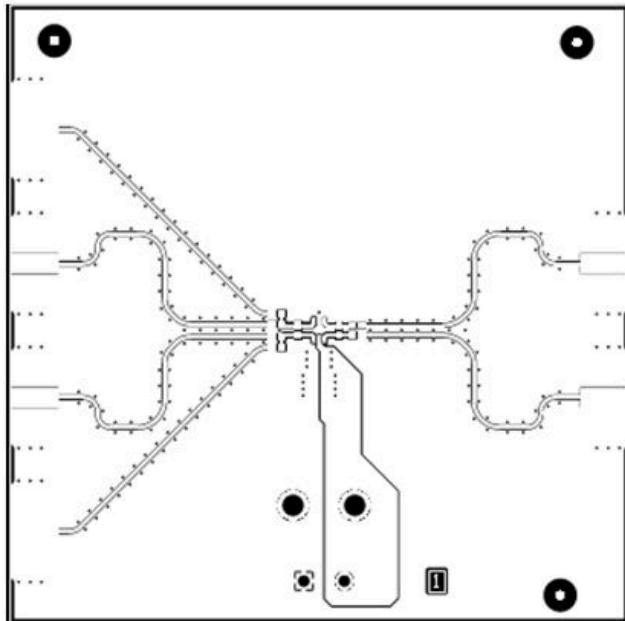
Figure 7-9 is a typical configuration for creating an external trigger on oscilloscopes. The user adjusts the trigger level, and a DAC converts this trigger level to a voltage the TLV360x can use as a reference. The input voltage from an oscilloscope channel is then compared to the trigger reference voltage, and the TLV3604, TLV3605, and TLV3607 sends an LVDS signal to a downstream FPGA to begin a capture.

Figure 7-9. External Trigger Function

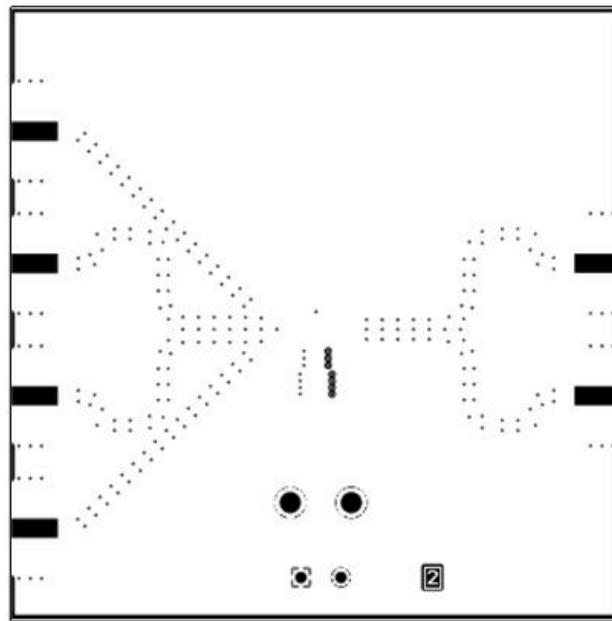
7.3 Power Supply Recommendations

The TLV3604, TLV3605, and TLV3607 are recommended for operation from 2.4V to 5.5V. One benefit of the TLV3605 and TLV3607 is that the comparator has separate input and output supply pins (VCCI and VCCO). This provides a system designer the flexibility of powering the input stage with a higher supply voltage such as 5V to maximize the dynamic range of the input while powering the output stage with a 2.5V supply to save power. Regardless of the VCCO supply voltage, the control pins such as LEB and SHDNB are 1.8V logic compliant.

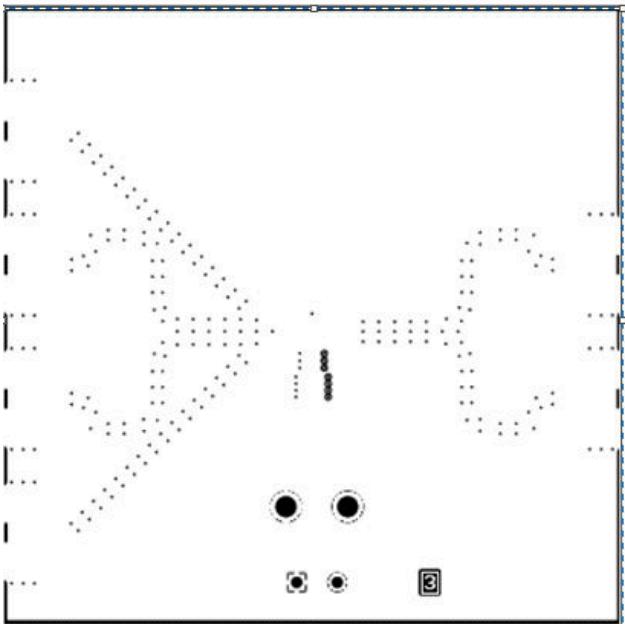
7.4 Layout

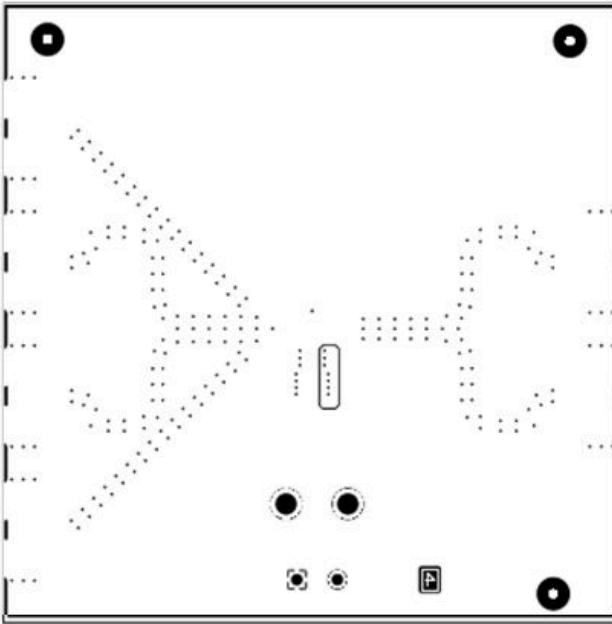

7.4.1 Layout Guidelines

Comparators are very sensitive to input noise. For best results, adhere to the following layout guidelines.


1. Use a printed-circuit-board (PCB) with a good, unbroken, low-inductance ground plane. Proper grounding (use of a ground plane) helps maintain specified device performance and input/output trace impedances.
2. To minimize supply noise, place a decoupling capacitor (0.1- μ F ceramic, surface-mount capacitor) directly between VCCI/VCCO and VEE.
3. On the inputs and outputs, utilize matched trace lengths to minimize timing skew. Also, minimize trace lengths and maximize ground pour spacings around the input and output traces to limit parasitic capacitance.
4. Solder the device directly to the PCB rather than using a socket.
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes minimal degradation to propagation delay when source impedance is low.
6. Use a 100Ω termination resistor across the device's LVDS outputs.
7. Use higher performance substrate materials such as Rogers or High-Speed FR4.
8. PCB signal layers from the TLV3604EVM are shown for reference.

7.4.2 Layout Example


Figure 10-1 shows the 4 layer PCB signal routing for the TLV3604EVM as an example for how layout on this device can be done.


Top Layer

GND-1 Layer

GND-2 Layer

Bottom Layer

Figure 7-10. TLV3604EVM Layout Example

8 Device and Documentation Support

8.1 Device Support

8.1.1 Development Support

LIDAR Pulsed Time of Flight Reference Design

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

8.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

[TI Glossary](#)

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (July 2023) to Revision F (June 2024)	Page
• Improved TLV3607 propagation delay to 800ps.....	1
• Updated Typical Application section.....	16

Changes from Revision D (June 2021) to Revision E (July 2023)	Page
• Added the dual channel TLV3607 throughout data sheet.....	1

Changes from Revision C (April 2021) to Revision D (June 2021)	Page
• Update Hysteresis Curve.....	15

Changes from Revision B (December 2020) to Revision C (April 2021)	Page
• Updated Typical Performance Curves.....	9
• Updated Latch Functionality.....	14

Changes from Revision A (August 2020) to Revision B (December 2020)	Page
• APL to RTM release.....	1

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TLV3604DCKR	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1HF
TLV3604DCKR.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1HF
TLV3604DCKRG4	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1HF
TLV3604DCKRG4.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1HF
TLV3604DCKT	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1HF
TLV3604DCKT.B	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1HF
TLV3605RVKR	Active	Production	WQFN (RVK) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	3605
TLV3605RVKR.B	Active	Production	WQFN (RVK) 12	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	3605
TLV3605RVKT	Active	Production	WQFN (RVK) 12	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	3605
TLV3605RVKT.B	Active	Production	WQFN (RVK) 12	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	3605
TLV3607RTER	Active	Production	WQFN (RTE) 16	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TL3607
TLV3607RTER.B	Active	Production	WQFN (RTE) 16	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TL3607

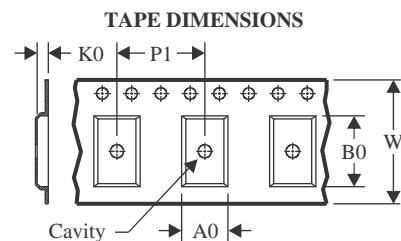
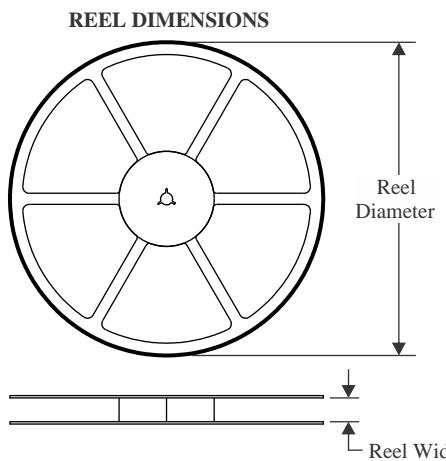
⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

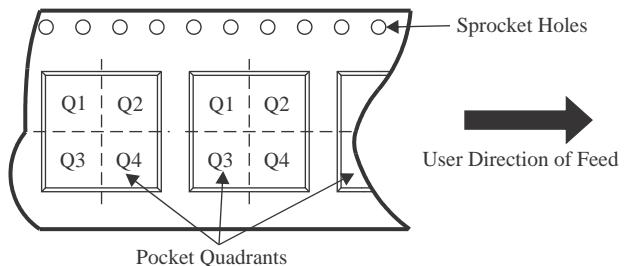
⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

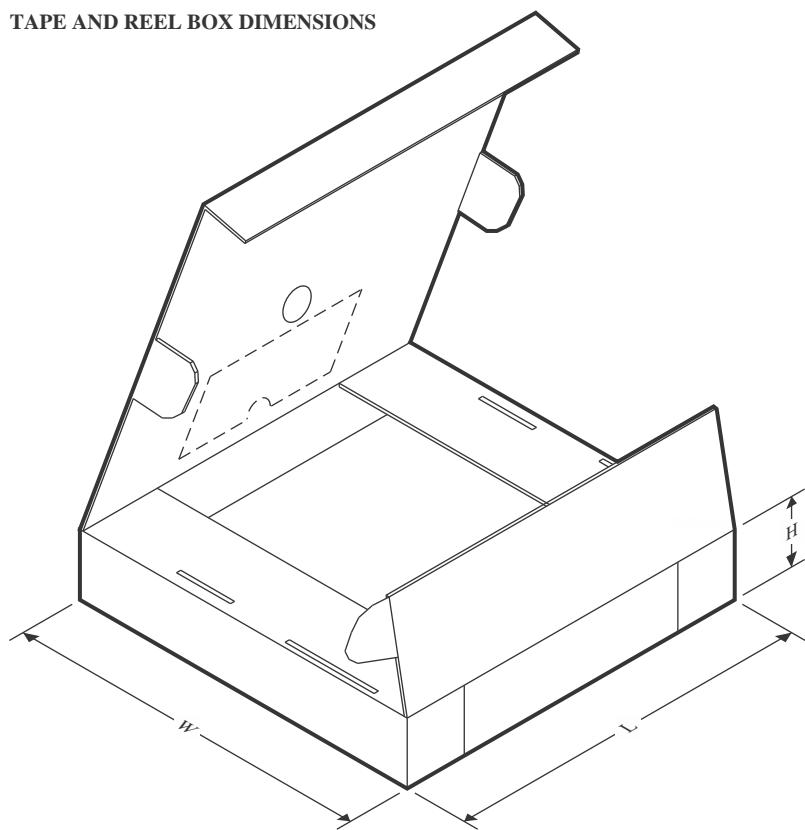


⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.



Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

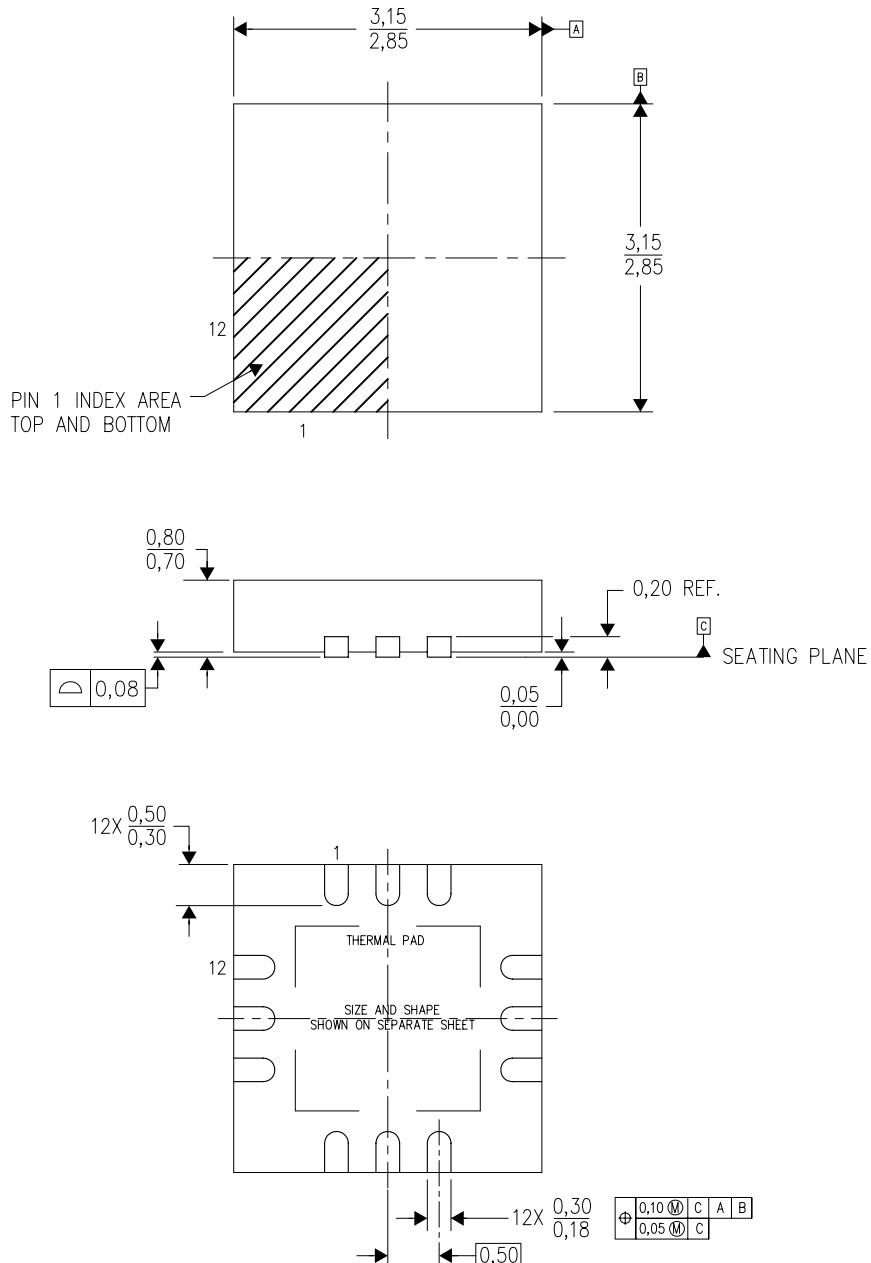
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV3604DCKR	SC70	DCK	6	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
TLV3604DCKRG4	SC70	DCK	6	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
TLV3604DCKT	SC70	DCK	6	250	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
TLV3605RVKR	WQFN	RVK	12	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TLV3605RVKT	WQFN	RVK	12	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TLV3607RTER	WQFN	RTE	16	5000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV3604DCKR	SC70	DCK	6	3000	183.0	183.0	20.0
TLV3604DCKRG4	SC70	DCK	6	3000	183.0	183.0	20.0
TLV3604DCKT	SC70	DCK	6	250	183.0	183.0	20.0
TLV3605RVKR	WQFN	RVK	12	3000	367.0	367.0	35.0
TLV3605RVKT	WQFN	RVK	12	250	210.0	185.0	35.0
TLV3607RTER	WQFN	RTE	16	5000	367.0	367.0	35.0

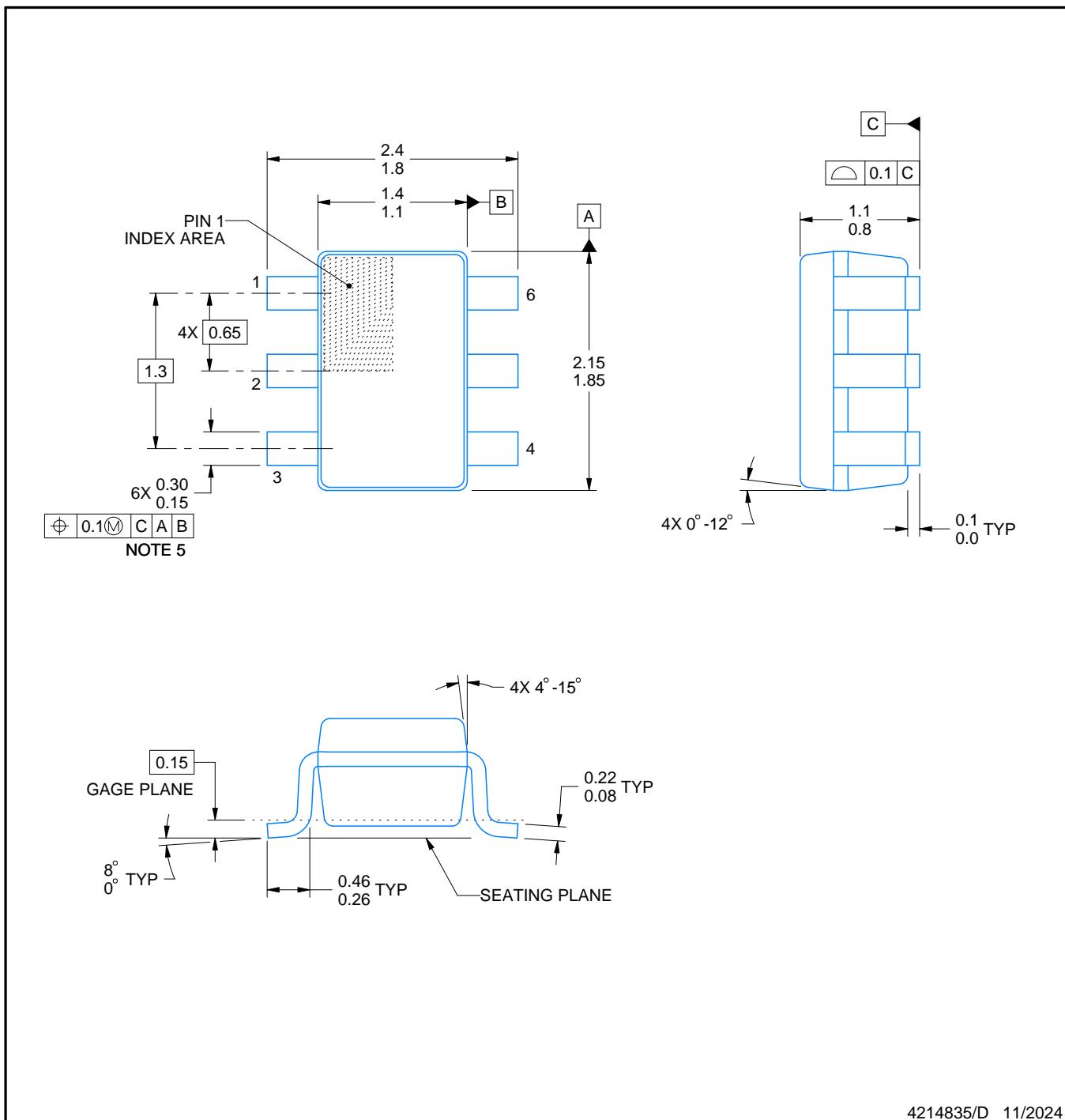
MECHANICAL DATA

RVK (S-PWQFN-N12)

PLASTIC QUAD FLATPACK NO-LEAD

4211889/B 10/11

- NOTES:
- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. Falls within JEDEC MO-220.


PACKAGE OUTLINE

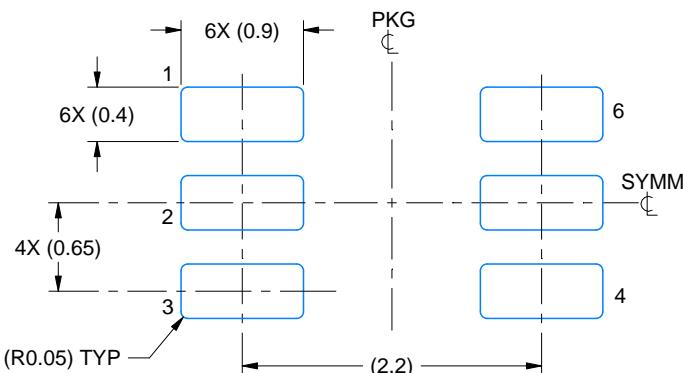
DCK0006A

SOT - 1.1 max height

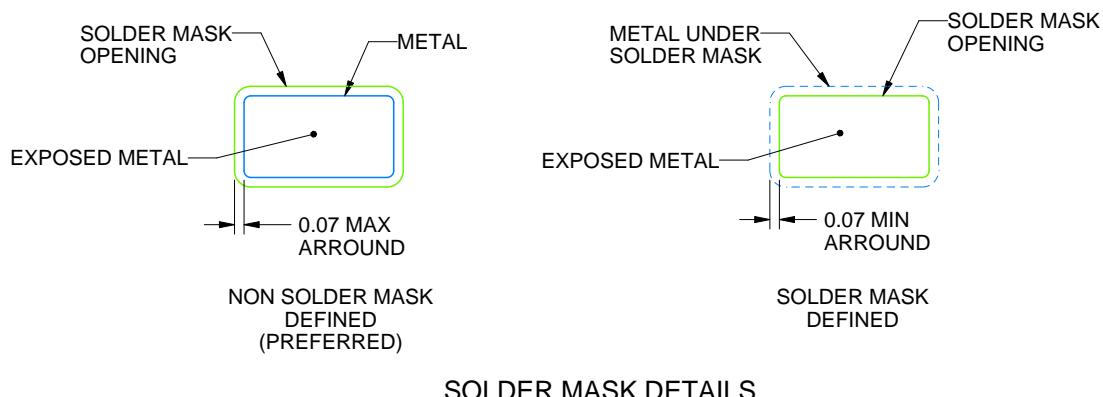
SMALL OUTLINE TRANSISTOR

4214835/D 11/2024

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
4. Falls within JEDEC MO-203 variation AB.

EXAMPLE BOARD LAYOUT


DCK0006A

SOT - 1.1 max height

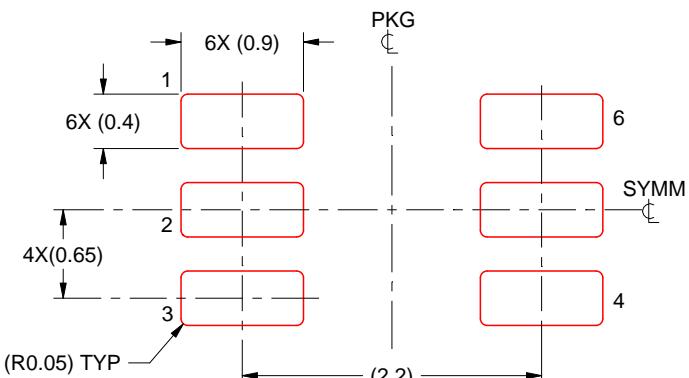
SMALL OUTLINE TRANSISTOR

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:18X

SOLDER MASK DETAILS

4214835/D 11/2024

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DCK0006A

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

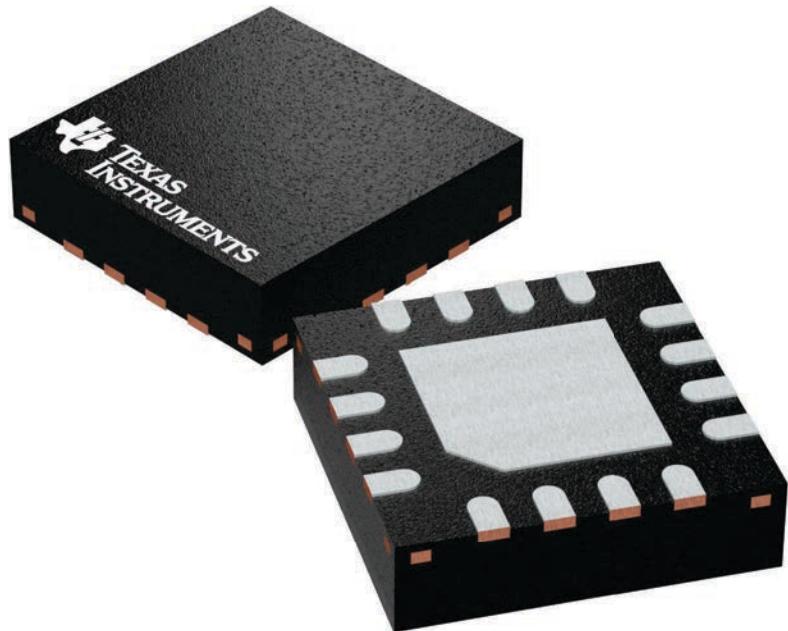
SOLDER PASTE EXAMPLE
BASED ON 0.125 THICK STENCIL
SCALE:18X

4214835/D 11/2024

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

GENERIC PACKAGE VIEW


RTE 16

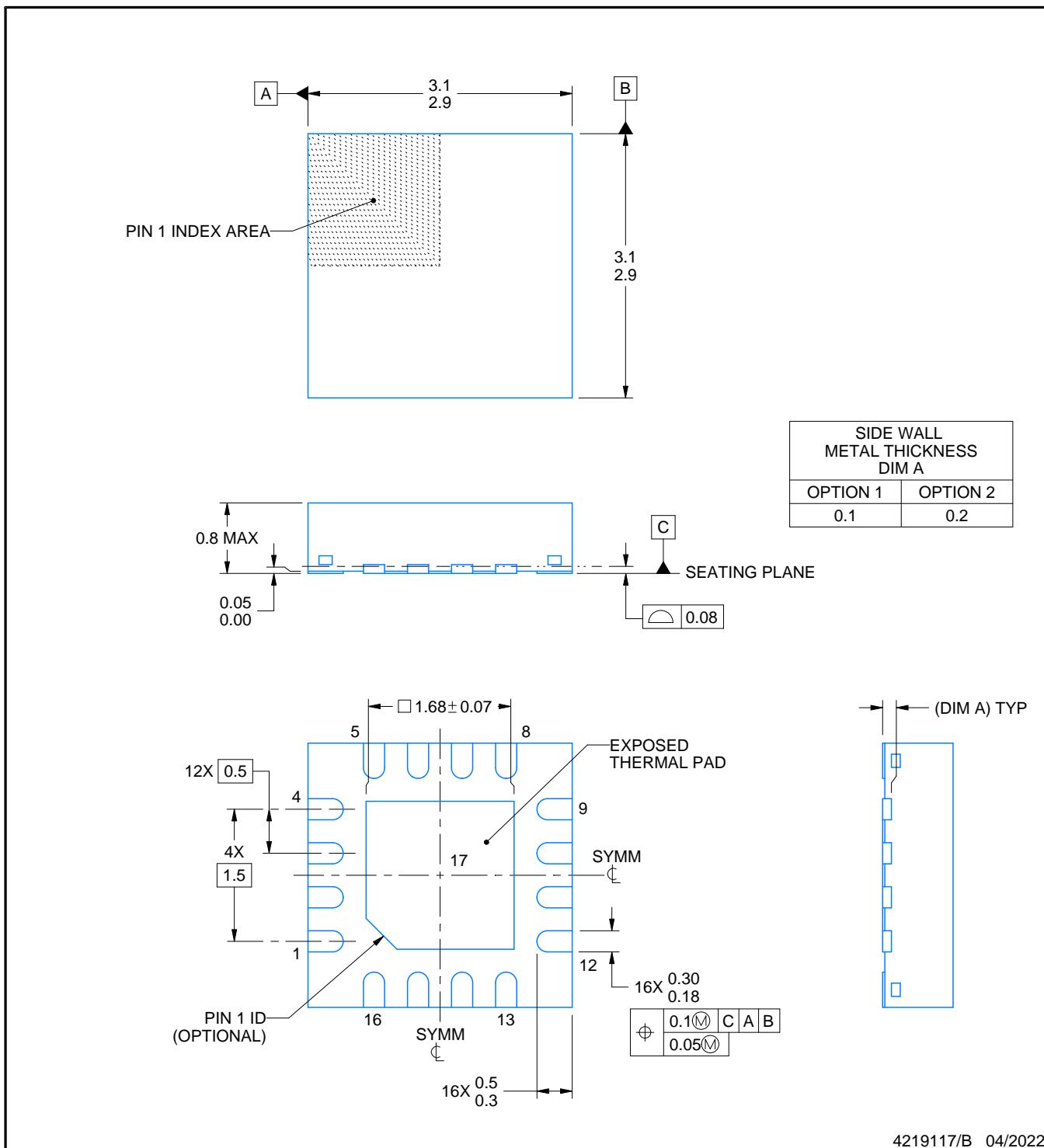
WQFN - 0.8 mm max height

3 x 3, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4225944/A

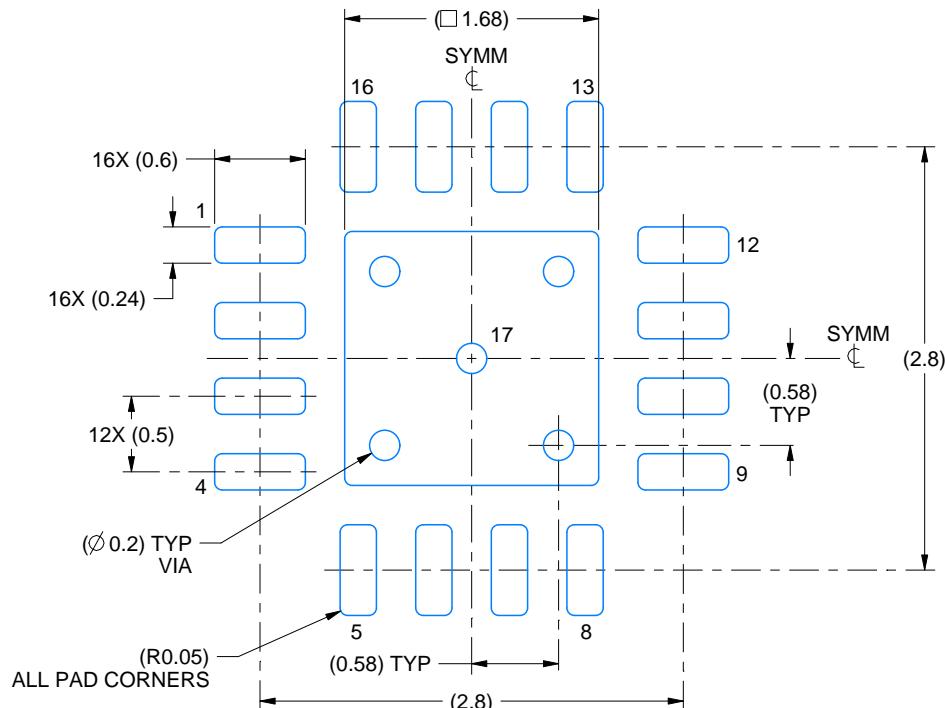

PACKAGE OUTLINE

RTE0016C

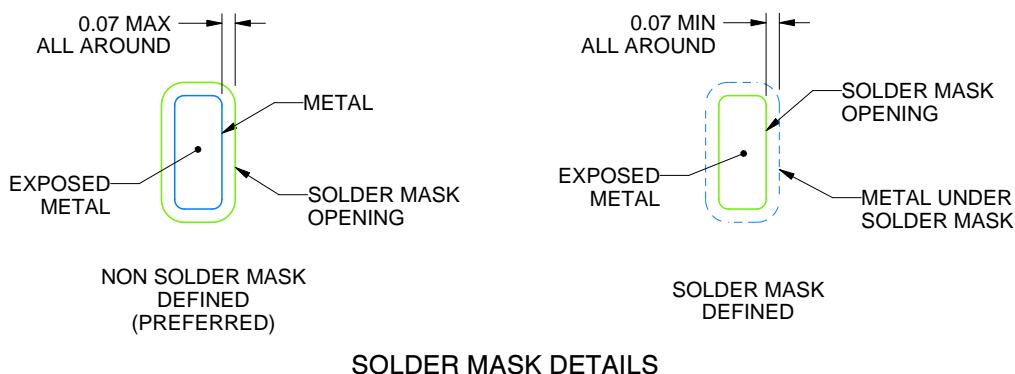
WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT


RTE0016C

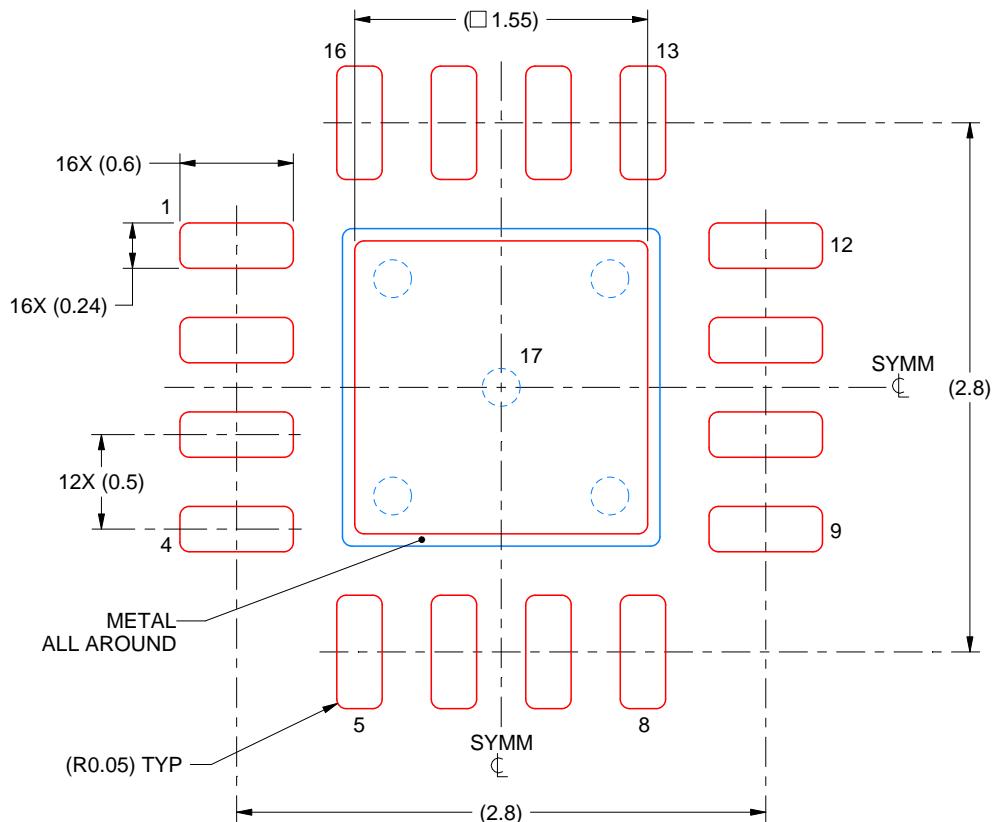
WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:20X

4219117/B 04/2022

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RTE0016C

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

4219117/B 04/2022

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025