

TPIC6596 Power Logic 8-bit Shift Register

1 Features

- Low $r_{DS(on)}$: 1.3Ω Typical
- Avalanche energy: 75mJ
- Eight power DMOS transistor outputs of 250mA Continuous Current
- 1.5A pulsed current per output
- Output clamp voltage at 45V
- Enhanced cascading for multiple stages all registers cleared with single input
- Low power consumption

2 Applications

- Instrumentation clusters
- Tell-tale lamps
- LED illumination and controls
- Automotive relay or solenoids drivers

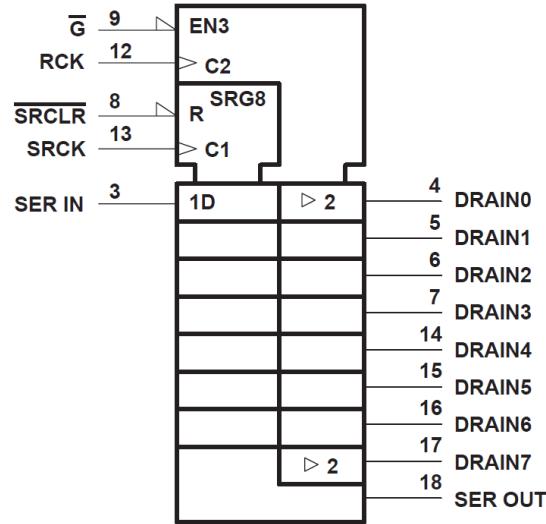
3 Description

The TPIC6596 is a monolithic, high-voltage, high-current power 8-bit shift register designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other medium-current or high-voltage loads.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shift-register clock (SRCK) and the register clock (RCK) respectively. The storage register transfers data to the output buffer when shift-register clear (SRCLR) is high. Write data and read data are valid only when RCK is low. When SRCLR is low, all registers in the device are cleared. When output enable (\bar{G}) is held high, all data in the output buffers is held low and all drain outputs are off. When \bar{G} is held low, data from the storage register is transparent to the output buffers. The serial output (SER OUT) is clocked out of the device on the falling edge of SRCK to provide additional hold time for cascaded applications. This provides improved performance for applications where clock signals can be skewed, devices are not located near one another, or the system must tolerate electromagnetic interference.

Outputs are low-side, open-drain DMOS transistors with output ratings of 45V and 250mA continuous sink current capability. When data in the output buffers is low, the DMOS-transistor outputs are off. When data

is high, the DMOS-transistor outputs have sink current capability.


Separate power and logic level ground pins are provided to facilitate maximum system flexibility. Pins 1, 10, 11, and 20 are internally connected, and each pin must be externally connected to the power system ground to minimize parasitic inductance. A single-point connection between pin 19, logic ground (LGND), and pins 1, 10, 11, and 20, power grounds (PGND), must be externally made in a manner that reduces crosstalk between the logic and load circuits. The TPIC6596 is characterized for operation over the operating case temperature range of -40°C to 125°C .

Device Information

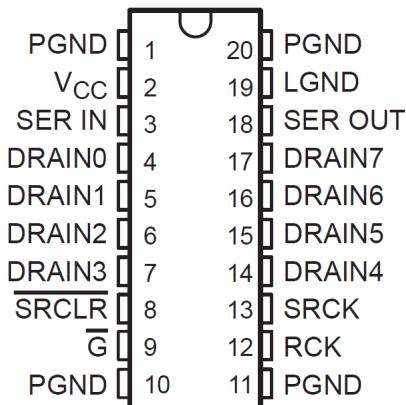
PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE (NOM)
TPIC6596	SOIC (20)	12.80mm × 7.50mm
	PDIP (20)	25.40mm × 6.35mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Typical Application



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	7.1 Overview.....	10
2 Applications	1	7.2 Functional Block Diagram.....	10
3 Description	1	7.3 Feature Description.....	11
4 Pin Configuration and Functions	3	7.4 Device Functional Modes.....	12
5 Specifications	4	8 Device and Documentation Support	13
5.1 Absolute Maximum Ratings.....	4	8.1 Receiving Notification of Documentation Updates.....	13
5.2 Dissipation Rating Table.....	4	8.2 Support Resources.....	13
5.3 Recommended Operating Conditions.....	4	8.3 Trademarks.....	13
5.4 Electrical Characteristics.....	5	8.4 Electrostatic Discharge Caution.....	13
5.5 Switching Characteristics	5	8.5 Glossary.....	13
5.6 Thermal Resistance Characteristics.....	6	9 Revision History	13
5.7 Typical Characteristics.....	6	10 Mechanical, Packaging, and Orderable Information	13
6 Parameter Measurement Information	8		
7 Detailed Description	10		

4 Pin Configuration and Functions

Figure 4-1. DW or N Package, 20-pin SOIC (Top- View)

Table 4-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		
DRAIN0	4	O	Open-drain output
DRAIN1	5		
DRAIN2	6		
DRAIN3	7		
DRAIN4	14		
DRAIN5	15		
DRAIN6	16		
DRAIN7	17		
\bar{G}	9	I	Output enable, active-low
LGND	19	-	Logic ground
PGND	1, 10, 11, 20	-	Power ground
RCK	12	I	Register clock
SER IN	3	I	Serial data input
SER OUT	18	O	Serial data output
SRCK	13	I	Shift register clock
SRCLR	8	I	Shift register clear, active-low
V _{CC}	2	I	Power supply

(1) P: Power Pin; I: Input Pin; I/O: Input/Output Pin; O: Output Pin.

5 Specifications

over operating free-air temperature range (unless otherwise noted)^{(1) (2)}

5.1 Absolute Maximum Ratings

		MIN	MAX	UNIT
V_{CC}	Logic supply voltage		7	V
V_I	Logic input voltage range	-0.3	7	V
V_{DS}	Power DMOS drain-to-source voltage		45	V
	Continuous source-drain diode anode current		1	A
	Pulsed source-drain diode anode current		2	A
	Pulsed drain current, each output, all outputs on, see also ⁽³⁾		750	mA
I_{Dn}	Continuous drain current, each output, all outputs on, $T_A = 25^\circ C$		250	mA
I_{DM}	Peak drain current single output, $T_A = 25^\circ C$ (See ⁽³⁾)		2	A
E_{AS}	Single-pulse avalanche energy (See ⁽⁴⁾)		75	mJ
I_{AS}	Avalanche current (See ⁽⁴⁾)		1	A
	Continuous total power dissipation	see Section 5.2		⁽⁵⁾
T_J	Operating virtual junction temperature range	-40	150	$^\circ C$
T_{stg}	Storage temperature	-65	150	$^\circ C$
	Lead temperature 1, 6mm (1/16 inch) from case for 10 seconds		260	$^\circ C$

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltage values are with respect to network ground terminal GND.

(3) Pulse duration $\leq 100\mu s$, duty cycle $\leq 2\%$

(4) DRAIN supply voltage = 15V, starting junction temperature (T_{JS}) = $25^\circ C$, $L = 100mH$, $I_{AS} = 1A$ (see [Figure 5-1](#)).

(5) See Dissipation Table

5.2 Dissipation Rating Table

PACKAGE	$T_C \leq 25^\circ C$ POWER RATING	DERATING FACTOR ABOVE $T_C = 25^\circ C$	$T_C = 125^\circ C$ POWER RATING
DW	1125mW	9.0mW/ $^\circ C$	225mW
N	1150mW	9.2mW/ $^\circ C$	230mW

over operating free-air temperature range (unless otherwise noted)

5.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V_{CC}	Logic supply voltage	4.5	5.5	V
V_{IH}	High-level input voltage	0.85 V_{CC}		V
V_{IL}	Low-level input voltage		0.15 V_{CC}	V
	Pulsed drain output current, $T_C = 25^\circ C$, $V_{CC} = 5V$ See ⁽¹⁾ , ⁽²⁾	-1.8	1.5	A
t_{su}	Setup time, SER IN high before SRCK↑, see Figure 6-2	10		ns
t_h	Hold time, SER IN high after SRCK↑, see Figure 6-2	10		ns
t_w	Pulse duration, see Figure 6-2	20		ns
T_C	Operating case temperature	-40	125	$^\circ C$

(1) Pulse duration $\leq 100\mu s$, duty cycle $\leq 2\%$.

(2) Technique must limit $T_J - T_C$ to $10^\circ C$ maximum.

over operating free-air temperature range ($V_{CC} = 5V$, $T_C = 25^\circ C$, unless otherwise noted)

5.4 Electrical Characteristics

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
$V_{(BR)DSX}$	Drain-source breakdown voltage $I_D = 1mA$		45		V		
V_{SD}	Source-drain diode forward voltage $I_F = 250mA$, see (1)		0.85		1	V	
V_{OH}	High-level output voltage, High-level output voltage, SER OUT $I_{OH} = -20mA$, $V_{CC} = 4.5V$		4.4	4.49	V		
	$I_{OH} = -4mA$, $V_{CC} = 4.5V$		4.1	4.3			
V_{OL}	Low-level output voltage, SER OUT $I_{OH} = 20mA$, $V_{CC} = 4.5V$		0.002		0.1	V	
	$I_{OH} = 4mA$, $V_{CC} = 4.5V$		0.2		0.4		
$V_{(hys)}$	Input hysteresis $V_{DS} = 15V$		1.3		V		
I_{IH}	High-level input current $V_{CC} = 5.5V$, $V_I = V_{CC}$		1		μA		
I_{IL}	Low-level input current $V_{CC} = 5.5V$, $V_I = 0$		-1		μA		
I_{CCL}	Logic supply current $I_O = 0$, All inputs low		15	100	μA		
$I_{CC(FRQ)}$	Logic supply current frequency $f_{SRCK} = 5MHz$, $I_O = 0$, $CL = 30pF$		0.6		5	mA	
I_N	Nominal current $V_{DS(on)} = 0.5V$, $I_N = I_D$, $T_C = 85^\circ C$		See (2), (3), and (4)		250	mA	
I_{DSX}	Off-state drain current $V_{DS} = 40V$		0.05		1	μA	
	$V_{DS} = 40V$; $T_C = 125^\circ C$		0.15		5		
$r_{DS(on)}$	Static drain-source on-state resistance $I_D = 250mA$, $V_{CC} = 4.5V$		See (2), (3), Figure 5-5 and Figure 5-6		1.3	2	
	$I_D = 250mA$, $V_{CC} = 4.5V$, $T_C = 125^\circ C$				2	3.2	
	$I_D = 500mA$, $V_{CC} = 4.5V$				1.3	2	

 (1) Pulse duration $\leq 100\mu s$, duty cycle $\leq 2\%$.

 (2) Technique must limit $T_J - T_C$ to $10^\circ C$ maximum.

(3) These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

 (4) Nominal current is defined for a consistent comparison between devices from different sources. The current produces a voltage drop of $0.5V$ at $T_C = 85^\circ C$.

over operating free-air temperature range (unless otherwise noted)

5.5 Switching Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}	Propagation delay time, low-to-high-level output from \bar{G}	650			ns
t_{PHL}	Propagation delay time, high-to-low-level output from \bar{G}	200			ns
t_r	Rise time, drain output	230			ns
t_f	Fall time, drain output	170			ns
t_{PD}	Propagation delay time, SRCK \downarrow to SER OUT	50			ns
f_{SRCK}	Serial clock frequency	See Figure 6-2		5	MHz
t_a	Reverse-recovery-current rise time	See Figure 6-3		100	ns
t_{rr}	Reverse-recovery time			300	

 (1) Technique must limit $T_J - T_C$ to $10^\circ C$ maximum.

(2) These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

 (3) This is the maximum serial clock frequency assuming cascaded operation where serial data is passed from one stage to a second stage. The clock period allows SRCK \rightarrow SER OUT propagation delay and setup time plus some timing margin

5.6 Thermal Resistance Characteristics

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
$R_{\theta JA}$	Thermal resistance, junction-to-ambient	DW	All eight outputs with equal power	111		
		N		108		°C/W

5.7 Typical Characteristics

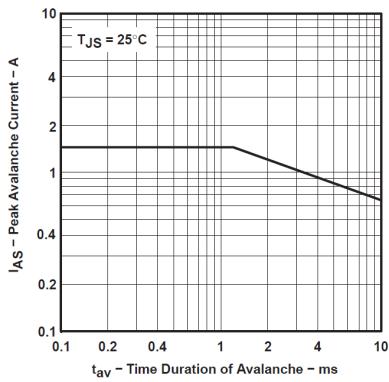


Figure 5-1. Peak Avalanche Current vs. Time Duration of Avalanche

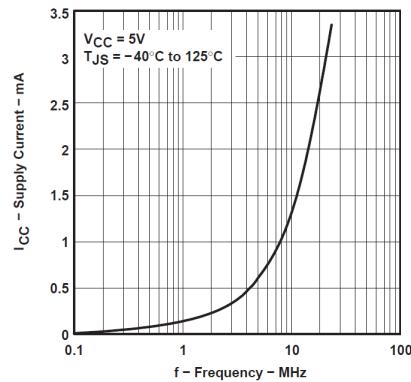


Figure 5-2. Supply Current vs. Frequency

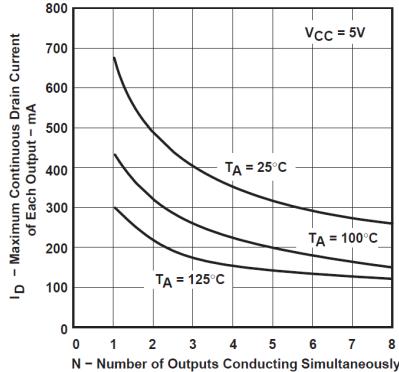


Figure 5-3. Maximum Continuous Drain Current of Each Output vs. Number Of Outputs Conducting Simultaneously

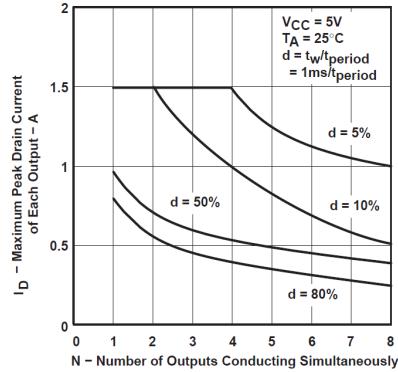


Figure 5-4. Maximum Peak Drain Current of Each Output vs. Number of Outputs Conducting Simultaneously

5.7 Typical Characteristics (continued)

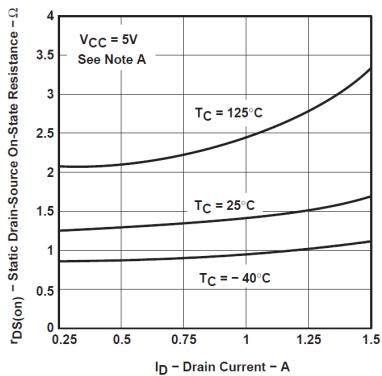


Figure 5-5. Static Drain-source On-state Resistance vs. Drain Current

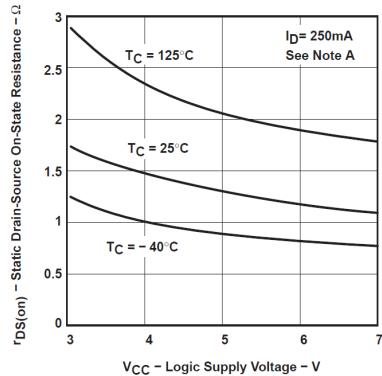
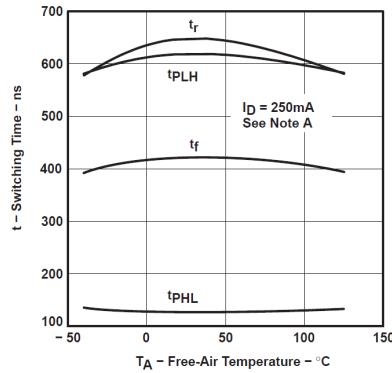
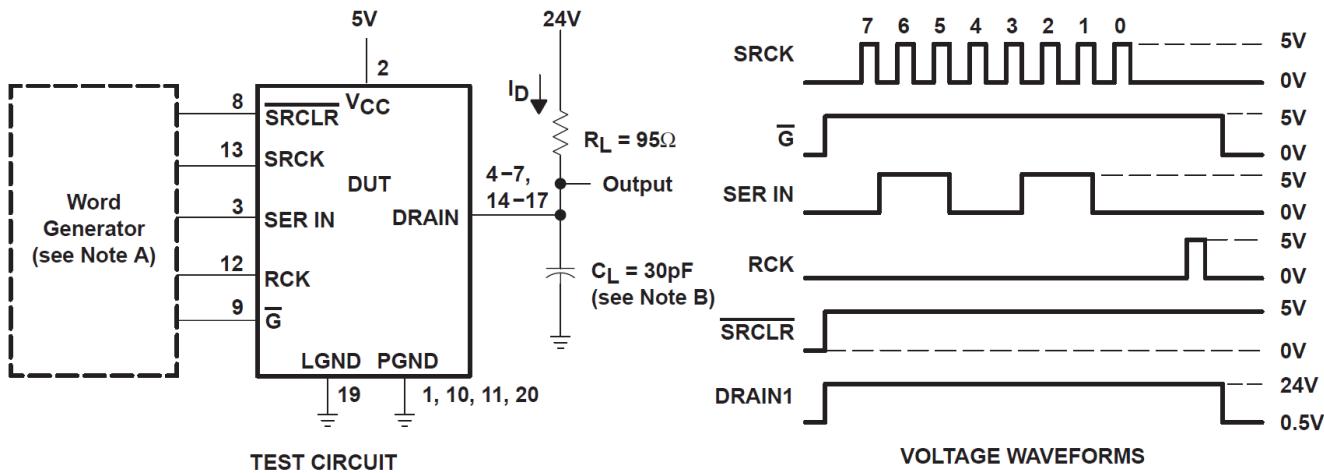
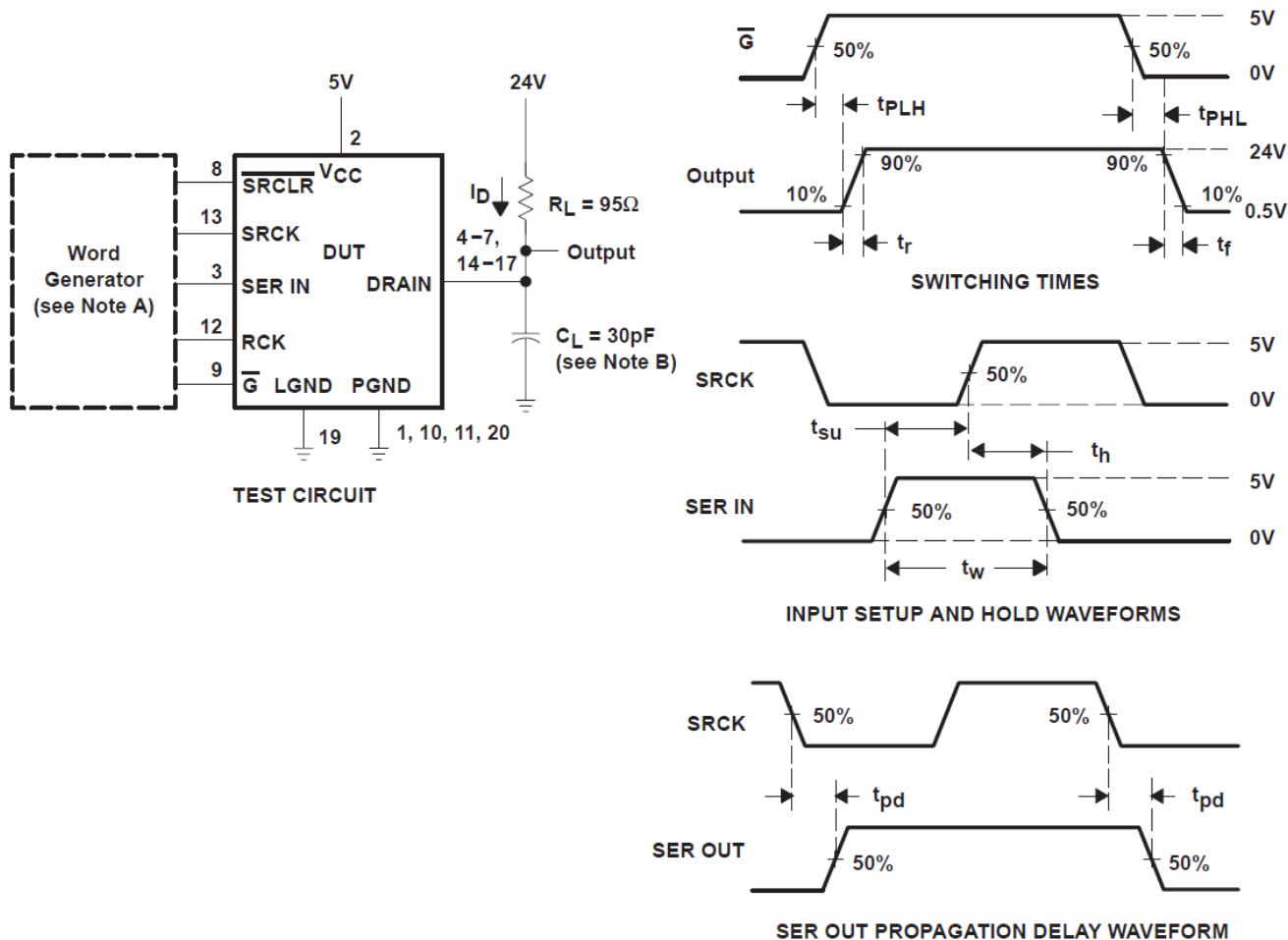


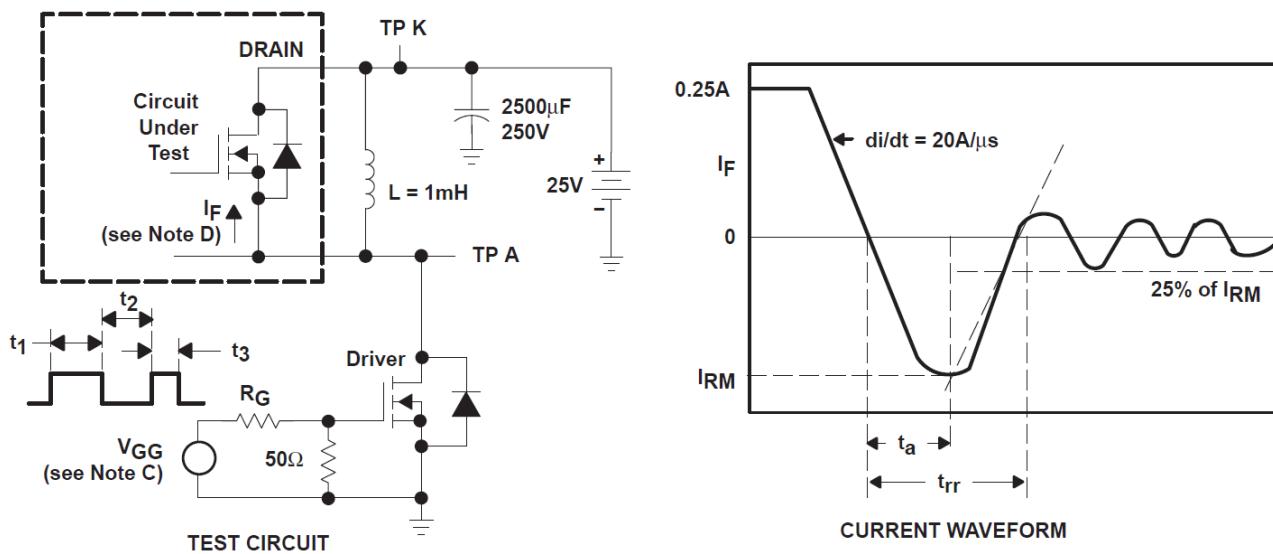
Figure 5-6. Static Drain-source On-state Resistance vs. Logic Supply Voltage


Figure 5-7. Switching Time vs. Free-air Temperature

6 Parameter Measurement Information

A. Write data and read data are valid only when RCK is low


Figure 6-1. Resistive Load Operation

A. C_L includes probe and jig capacitance.

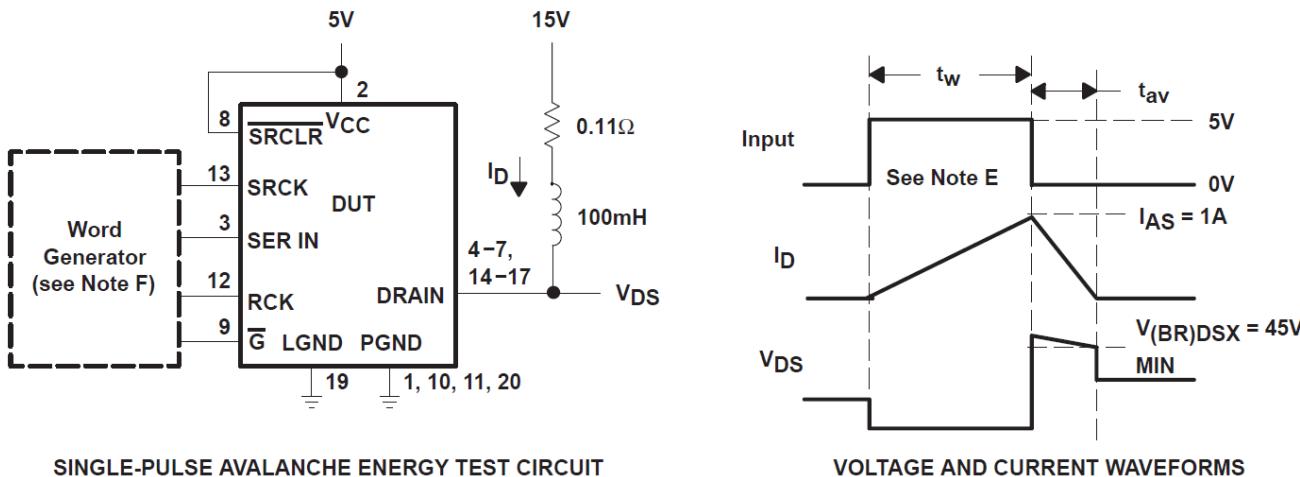
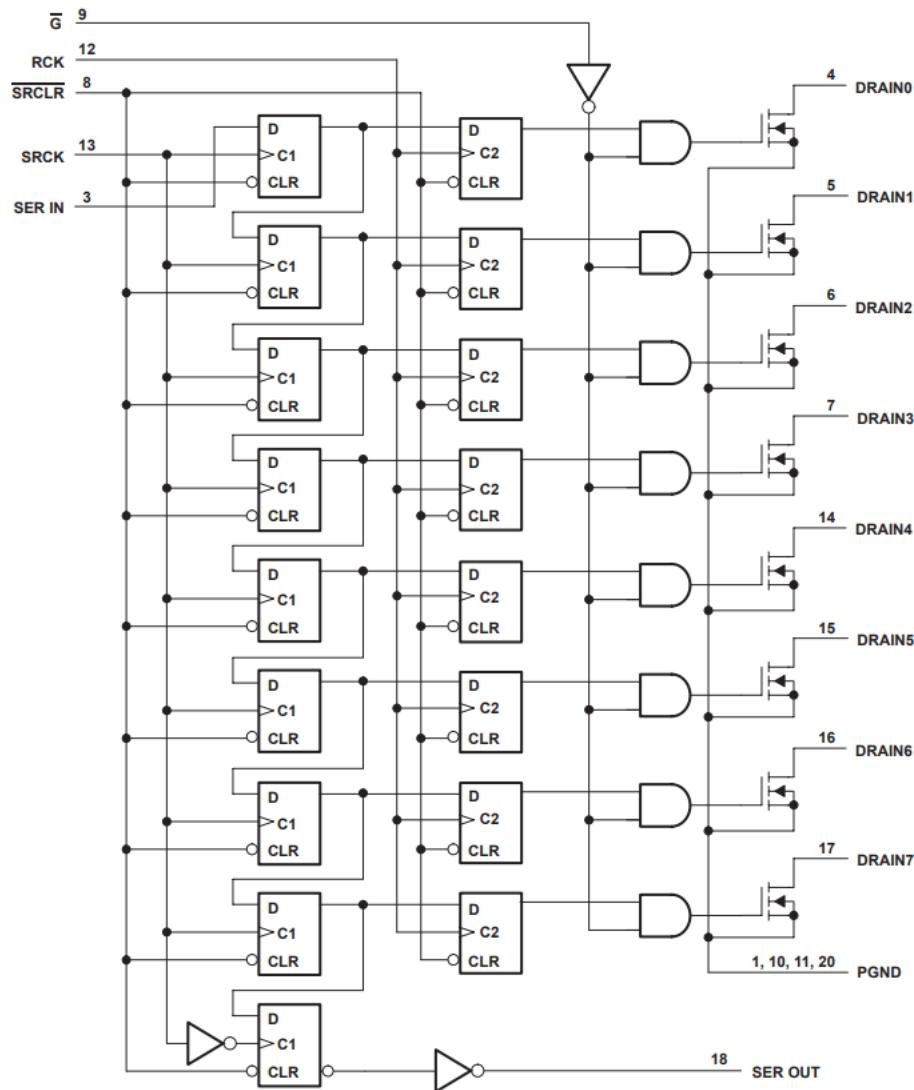

B. Outputs DRAIN 1, 2, 5, and 6 low (PGND), all other DRAIN outputs are at 24V. The word generator has the following characteristics: $t_r \leq 10\text{ns}$, $t_f \leq 10\text{ns}$, $t_w = 300\text{ns}$, pulsed repetition rate (PRR) = 5kHz, $Z_0 = 50\Omega$.

Figure 6-2. Test Circuit, Switching Times, and Voltage Waveforms

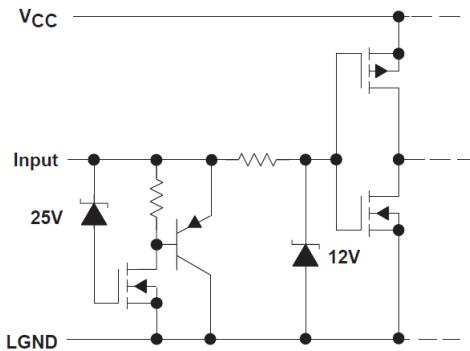
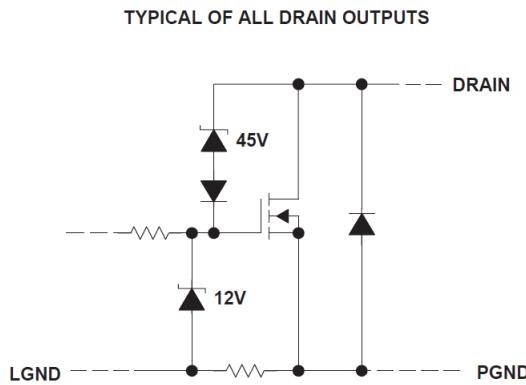
A. The V_{GG} amplitude and R_G are adjusted for $di/dt = 20\text{A}/\mu\text{s}$. A V_{GG} double-pulse train is used to set $I_F = 0.25\text{A}$, where $t_1 = 10\mu\text{s}$, $t_2 = 7\mu\text{s}$, and $t_3 = 3\mu\text{s}$.
B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.

Figure 6-3. Reverse-Recovery-Current Test Circuit and Waveforms of Source-Drain Diode

A. The word generator has the following characteristics: $t_r \leq 10\text{ns}$, $t_f \leq 10\text{ns}$, $Z_0 = 50\Omega$.
B. Input pulse duration, t_w , is increased until peak current $I_{AS} = 1\text{A}$. Energy test level is defined as $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{av}/2 = 75\text{mJ}$, where t_{av} = avalanche time.


Figure 6-4. Single-Pulse Avalanche Energy Test Circuit and Waveforms

7 Detailed Description



7.1 Overview

The TPIC6596 is a monolithic, high-voltage, high-current power 8-bit shift register designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other medium-current or high-voltage loads.

7.2 Functional Block Diagram

Figure 7-1. Functional Block Diagram

Equivalent of Each Input Schematic

Typical of All Drain Outputs Schematic

7.3 Feature Description

7.3.1 Serial-In Interface

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shift-register clock (SRCK) and the register clock (RCK) respectively. Write data and read data are valid only when RCK is low. The storage register transfers data to the output buffer when shift register clear (SRCLR) is high.

7.3.2 Clear Register

A logical low on (SRCLR) clears all registers in the device. TI suggests clearing the device during power up or initialization.

7.3.3 Output Control

When output enable (G) is held high, all data in the output buffers is held low and all drain outputs are off. Holding (G) low makes data from the storage register transparent to the output buffers. When data in the output buffers is low, the DMOS transistor outputs are OFF. When data is high, the DMOS transistor outputs have sink-current capability. This pin can also be used for global PWM dimming.

7.3.4 Cascaded Application

The serial output (SER OUT) is clocked out of the device on the falling edge of SRCK to provide additional hold time for cascaded applications. This will provide improved performance for applications where clock signals may be skewed, devices are not located near one another, or the system must tolerate electromagnetic interference. Connect the device (SER OUT) pin to the next device (SER IN) for daisy Chain.

7.3.5 Current Limit Function

Outputs are low-side, open-drain DMOS transistors with output ratings of 45V and 250mA continuous sink current capability

7.4 Device Functional Modes

7.4.1 Operating with $V_{cc} < 4.5V$

This device works normally during $4.5V \leq V_{cc} \leq 5.5V$, when operation voltage is lower than 4.5V, correct behavior of the device, including communication interface and current capability, is not assured.

7.4.2 Operating with $5.5V < V_{cc} \leq 7V$

The device works normally in this voltage range, but reliability issues can occur if the device works for a long time in this voltage range.

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

8.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.2 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

8.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (April 2000) to Revision B (March 2025)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1
• Changed SRCLR timing diagram.....	8

Changes from Revision * (May 2005) to Revision A (April 2000)	Page
• Changed SRCLR timing diagram.....	1

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

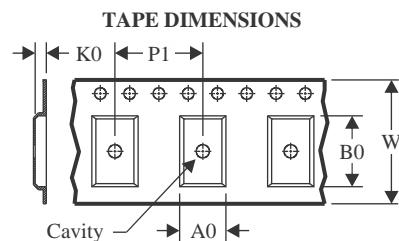
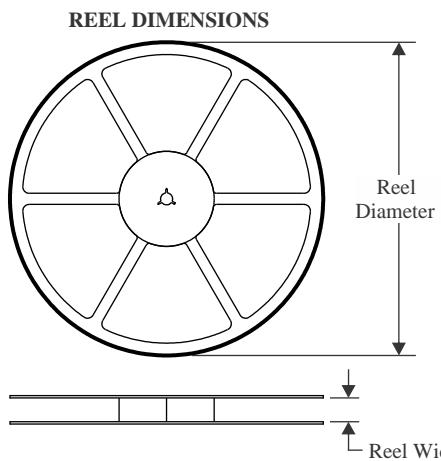
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPIC6596DWG4	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-	TPIC6596
TPIC6596DWRG4	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-	TPIC6596
TPIC6596DWRG4.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPIC6596
TPIC6596N	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	TPIC6596N
TPIC6596N.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	TPIC6596N

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

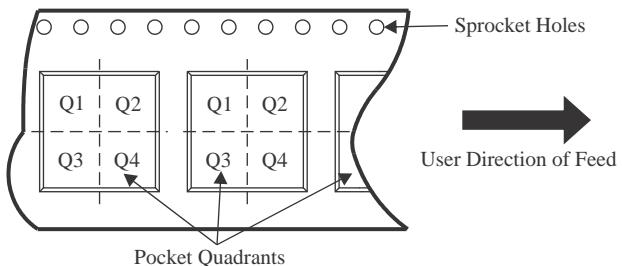
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

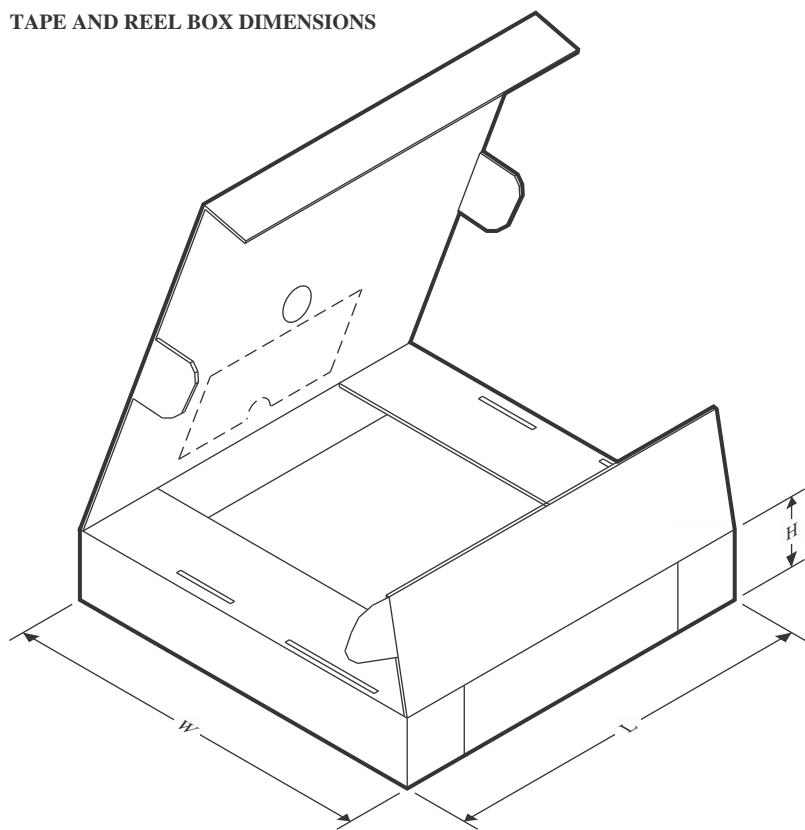


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

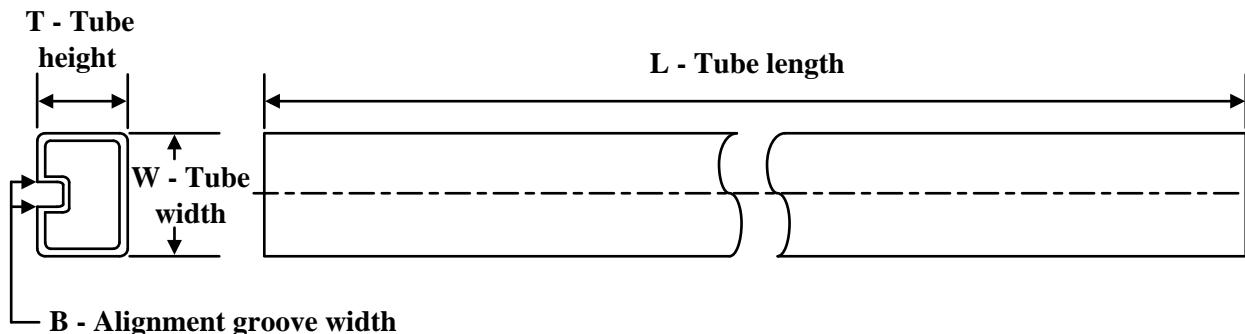
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

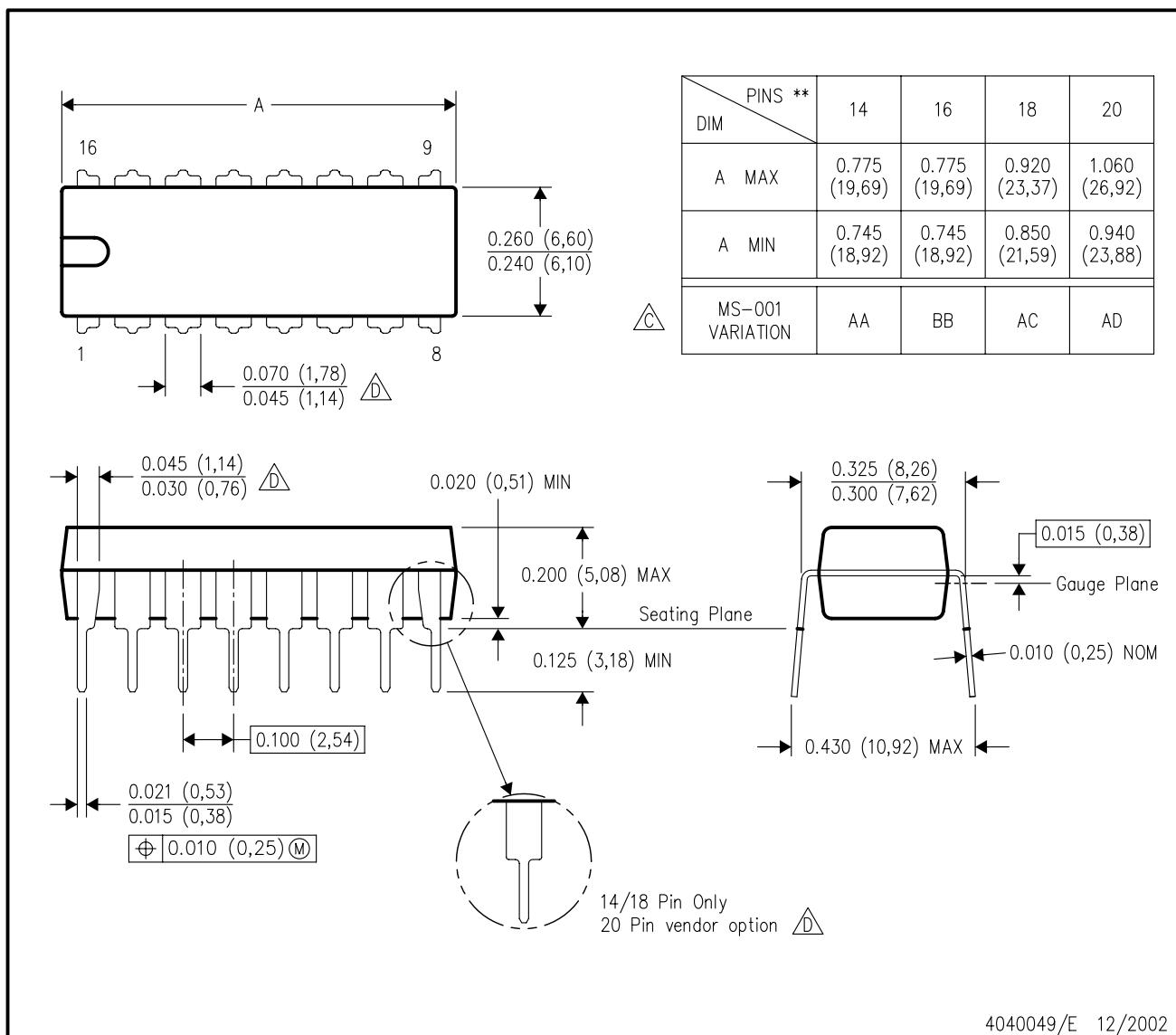
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPIC6596DWRG4	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TPIC6596DWRG4	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPIC6596DWRG4	SOIC	DW	20	2000	350.0	350.0	43.0
TPIC6596DWRG4	SOIC	DW	20	2000	350.0	350.0	43.0

TUBE

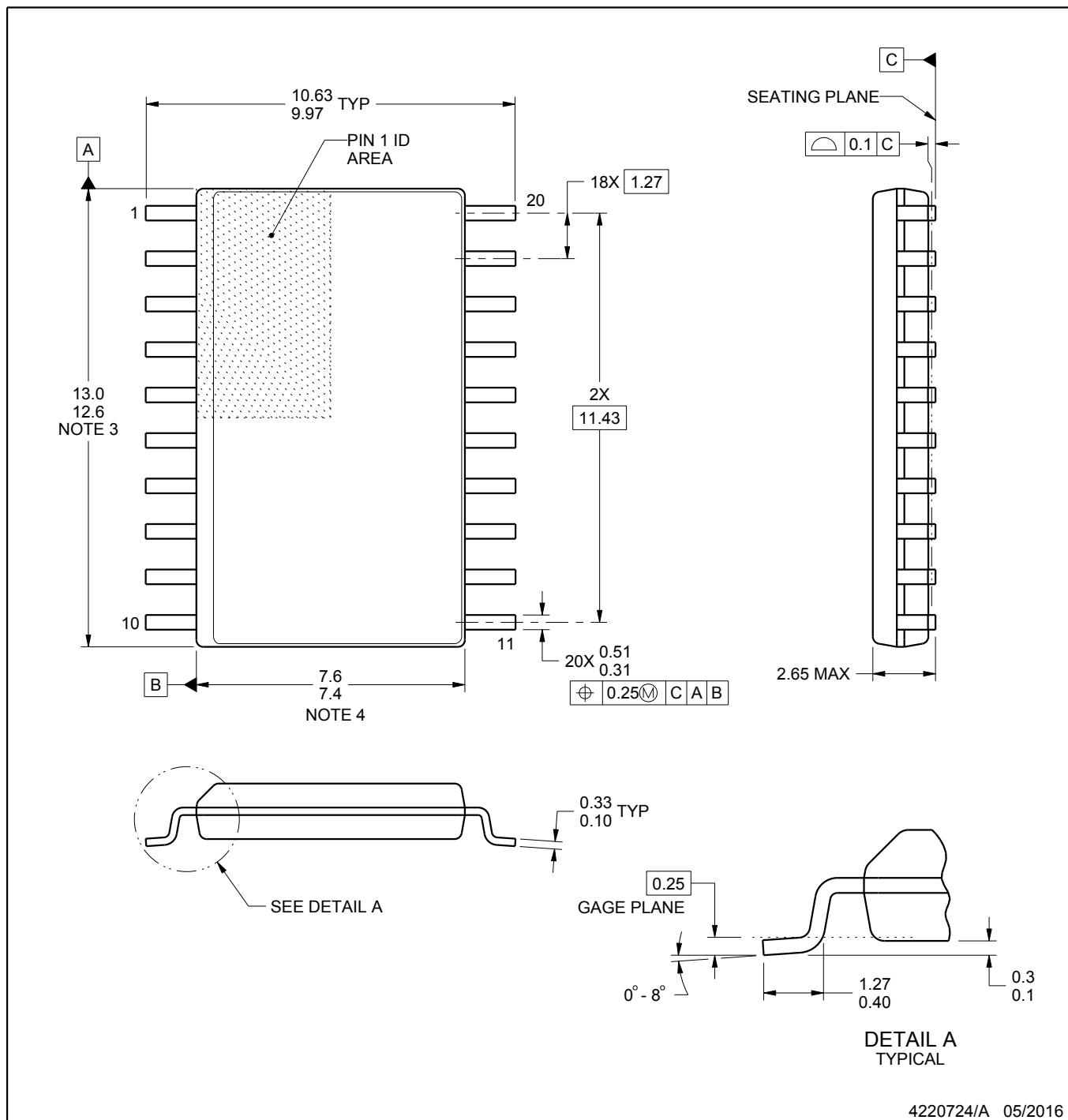

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
TPIC6596N	N	PDIP	20	20	506	13.97	11230	4.32
TPIC6596N.A	N	PDIP	20	20	506	13.97	11230	4.32

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE



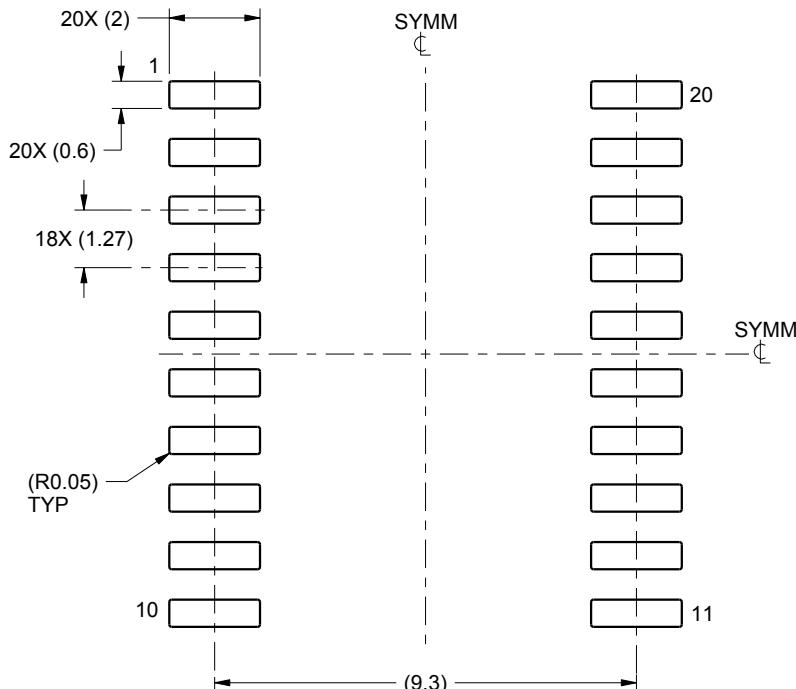
PACKAGE OUTLINE

DW0020A

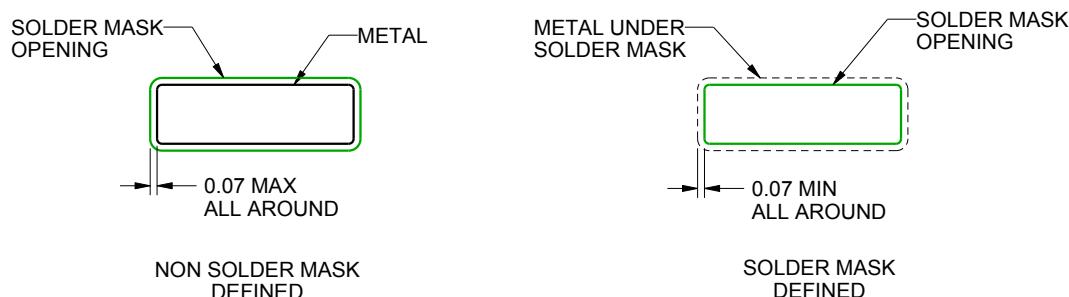
SOIC - 2.65 mm max height

SOIC

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT


DW0020A

SOIC - 2.65 mm max height

SOIC

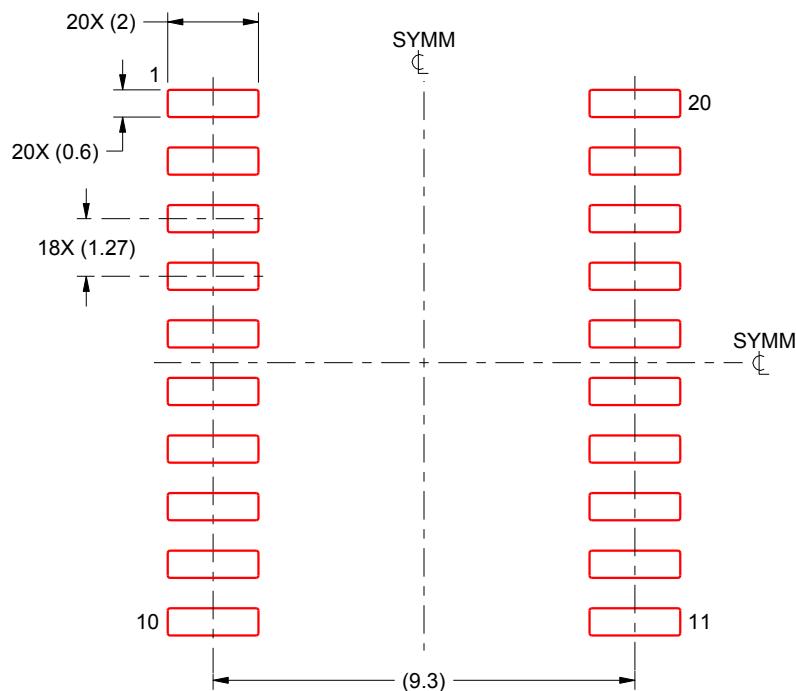
LAND PATTERN EXAMPLE
SCALE:6X

SOLDER MASK DETAILS

4220724/A 05/2016

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0020A

SOIC - 2.65 mm max height

SOIC

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

4220724/A 05/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025