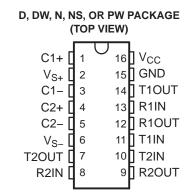


DUAL RS-232 DRIVER/RECEIVERWITH IEC61000-4-2 PROTECTION

FEATURES


- Meets or Exceeds TIA/RS-232-F and ITU Recommendation V.28
- Operates From a Single 5-V Power Supply With 1.0-μF Charge-Pump Capacitors
- Operates up to 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- ESD Protection Exceeds JESD22
 - 2000-V Human-Body Model (HBM) (A114-A)
- Upgrade With Improved ESD (15-kV HBM) and 0.1-μF Charge-Pump Capacitors Is Available With the TRS202

APPLICATIONS

- TIA/RS-232-F
- Battery-Powered Systems
- Terminals
- Modems
- Computers

DESCRIPTION/ORDERING INFORMATION

The TRS232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/RS-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/RS-232-F inputs to 5-V TTL/CMOS levels. This receiver has a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/RS-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC™ library.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

ORDERING INFORMATION

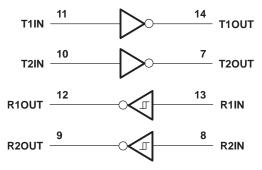
T _A	PA	CKAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube of 25	TRS232CN	TRS232CN
0°C to 70°C	SOIC - D	Tube of 40	TRS232CD	TDC222C
	201C – D	Reel of 2500	TRS232CDR	TRS232C
	COIC DW	Tube of 40	TRS232CDW	TDC000C
	SOIC – DW	Reel of 2000	TRS232CDWR	TRS232C
	SOP - NS	Reel of 2000	TRS232CNSR	TRS232C
	TOCOD DW	Tube of 25	TRS232CPW	TDC000C
	TSSOP – PW	Reel of 2000	TRS232CPWR	TRS232C
	PDIP – N	Tube of 25	TRS232IN	TRS232IN
	COIC D	Tube of 40	TRS232ID	TDC000I
	SOIC – D	Reel of 2500	TRS232IDR	TRS232I
40°C +- 05°C	COIC DW	Tube of 40	TRS232IDW	TDC000I
–40°C to 85°C	SOIC – DW	Reel of 2000	TRS232IDWR	TRS232I
	SOP - NS	Reel of 2000	TRS232INSR	TRS232I
	TOCOD DW	Tube of 25	TRS232IPW	TDC000I
	TSSOP – PW	Reel of 2000	TRS232IPWR	TRS232I

Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

FUNCTION TABLES

Each Driver⁽¹⁾

INPUT TnIN	OUTPUT TnOUT
L	Н
Н	L


(1) H = high level, L = low level

Each Receiver⁽¹⁾

INPUT RnIN	OUTPUT RnOUT
L	Н
Н	L

(1) H = high level, L = low level

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Input supply voltage range (2)		-0.3	6	V
V _{S+}	Positive-output supply voltage range		V _{CC} - 0.3	15	V
V _{S-}	Negative-output supply voltage range		-0.3	-15	V
	land to take the new years	Driver	-0.3	V _{CC} + 0.3	V
VI	Input voltage range	Receiver		±30	V
	Output well-and and and	T1OUT, T2OUT	V _{S-} - 0.3	V _{S+} + 0.3	
VO	Output voltage range	R1OUT, R2OUT	-0.3	V _{CC} + 0.3	V
	Short-circuit duration	T1OUT, T2OUT		Unlimited	
V_{S-} V_{I} V_{O} θ_{JA}		D package		73	
		DW package		57	
θ_{JA}	Package thermal impedance (3)(4)	N package		67	°C/W
		NS package		64	
		PW package		108	
TJ	Operating virtual junction temperature	<u>'</u>		150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5	5.5	V
V _{IH}	High-level input voltage	T1IN, T2IN	2			V
V _{IL}	Low-level input voltage	T1IN, T2IN			8.0	V
	Receiver input voltage	R1IN, R2IN			±30	V
_	Operating free cir temperature	TRS232C	0		70	°C
IA	Operating free-air temperature TRS232I		-40		85	. (

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)

	PARAMETER	TE	MIN	TYP ⁽²⁾	MAX	UNIT	
Icc	Supply current	$V_{CC} = 5.5 \text{ V},$	All outputs open, T _A = 25°C		8	10	mA

Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 5 V and T_A = 25°C.

Submit Documentation Feedback

All voltages are with respect to network GND.

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

www.ti.com

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature range

	PARAMETER	TEST CONI	MIN	TYP ⁽²⁾	MAX	UNIT		
V_{OH}	High-level output voltage	T1OUT, T2OUT	$R_L = 3 \text{ k}\Omega \text{ to GND}$		5	7		V
V_{OL}	Low-level output voltage (3)	T1OUT, T2OUT	$R_L = 3 \text{ k}\Omega \text{ to GND}$			-7	- 5	V
ro	Output resistance	T1OUT, T2OUT	$V_{S+} = V_{S-} = 0,$	$V_O = \pm 2 V$	300			Ω
I _{OS} (4)	Short-circuit output current	T1OUT, T2OUT	V _{CC} = 5.5 V,	V _O = 0		±10		mA
I _{IS}	Short-circuit input current	T1IN, T2IN	V _I = 0				200	μΑ

- (1) Test conditions are C1–C4 = 1 μF at V_{CC} = 5 V ± 0.5 V.
 (2) All typical values are at V_{CC} = 5 V and T_A = 25°C.
 (3) The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.
- (4) Not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Driver slew rate	$R_L = 3 \text{ k}\Omega \text{ to 7 k}\Omega$, See Figure 2			30	V/μs
SR(t)	Driver transition region slew rate	See Figure 3		3		V/μs
	Data rate	One TnOUT switching		120		kbit/s

(1) Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

RECEIVER SECTION

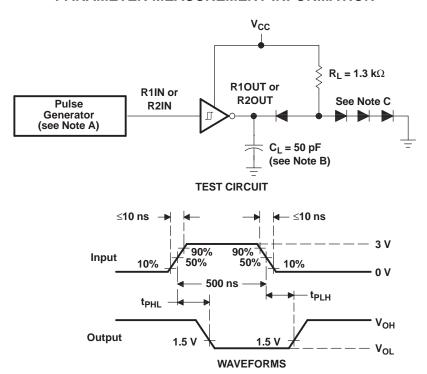
Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature range

	PARAMETER	TEST CON	MIN	TYP ⁽²⁾	MAX	UNIT		
V_{OH}	High-level output voltage	R1OUT, R2OUT	$I_{OH} = -1 \text{ mA}$		3.5			V
V_{OL}	Low-level output voltage (3)	R1OUT, R2OUT	I_{OL} = 3.2 mA				0.4	V
V_{IT+}	Receiver positive-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C		1.7	2.4	V
V_{IT-}	Receiver negative-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C	0.8	1.2		V
V _{hys}	Input hysteresis voltage	R1IN, R2IN	V _{CC} = 5 V		0.2	0.5	1	V
ri	Receiver input resistance	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C	3	5	7	kΩ

Switching Characteristics(1)

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (see Figure 1)}$


	PARAMETER	TYP	UNIT
t _{PLH(R)}	Receiver propagation delay time, low- to high-level output	500	ns
t _{PHL(R)}	Receiver propagation delay time, high- to low-level output	500	ns

(1) Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 5 V and T_A = 25°C. The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

PARAMETER MEASUREMENT INFORMATION

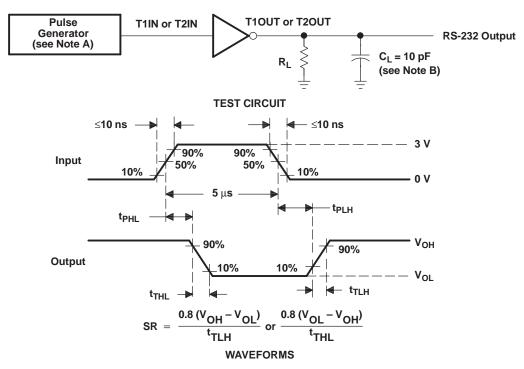
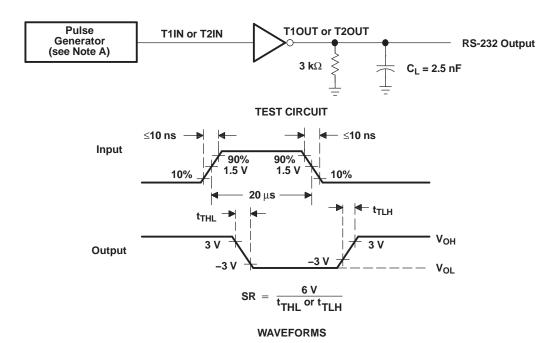

- A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.
- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

Figure 1. Receiver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements

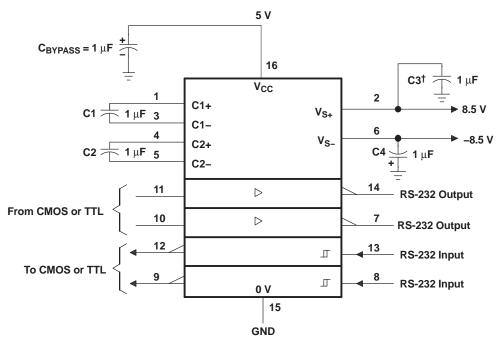
Submit Documentation Feedback



PARAMETER MEASUREMENT INFORMATION (continued)

- A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.
- B. C_L includes probe and jig capacitance.

Figure 2. Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-µs Input)



A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.

Figure 3. Test Circuit and Waveforms for t_{THL} and t_{TLH} Measurements (20-μs Input)

APPLICATION INFORMATION

 $^{^\}dagger$ C3 can be connected to V_{CC} or GND.

- A. Resistor values shown are nominal.
- B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. In addition to the 1-μF capacitors shown, the TRS202 can operate with 0.1-μF capacitors.

Figure 4. Typical Operating Circuit

www.ti.com 11-Nov-2025

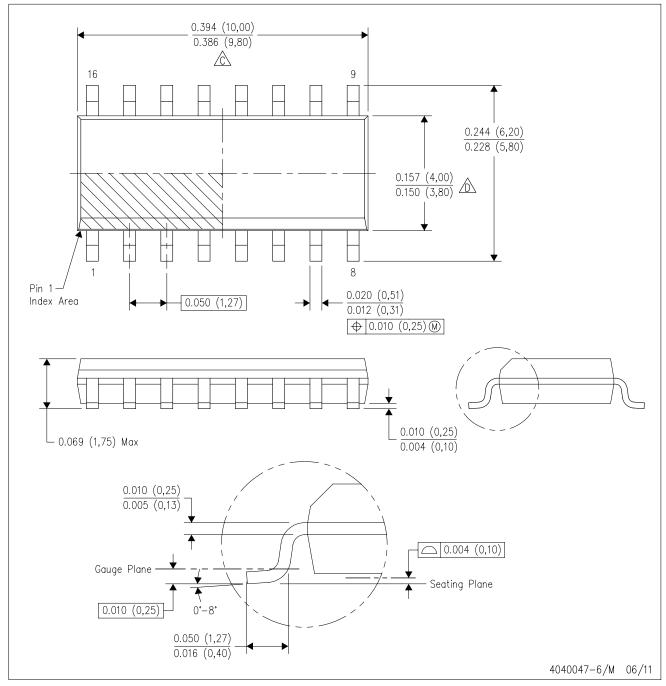
PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TRS232ID	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	TRS232I

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025