SLAS904F October   2012  – May 2016 ADS42LB49 , ADS42LB69

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: ADS42LB69 (16-Bit)
    6. 6.6  Electrical Characteristics: ADS42LB49 (14-Bit)
    7. 6.7  Electrical Characteristics: General
    8. 6.8  Digital Characteristics
    9. 6.9  Timing Requirements: General
    10. 6.10 Timing Requirements: DDR LVDS Mode
    11. 6.11 Timing Requirements: QDR LVDS Mode
    12. 6.12 Typical Characteristics: ADS42LB69
    13. 6.13 Typical Characteristics: ADS42LB49
    14. 6.14 Typical Characteristics: Common
    15. 6.15 Typical Characteristics: Contour
      1. 6.15.1 Spurious-Free Dynamic Range (SFDR): General
      2. 6.15.2 Signal-to-Noise Ratio (SNR): ADS42LB69
      3. 6.15.3 Signal-to-Noise Ratio (SNR): ADS42LB49
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Digital Gain
      2. 8.3.2 Input Clock Divider
      3. 8.3.3 Overrange Indication
        1. 8.3.3.1 OVR in a QDR Pinout
        2. 8.3.3.2 OVR in a DDR Pinout
        3. 8.3.3.3 Programming Threshold for Fast OVR
      4. 8.3.4 LVDS Buffer
      5. 8.3.5 Output Data Format
    4. 8.4 Device Functional Modes
      1. 8.4.1 Digital Output Information
        1. 8.4.1.1 Output Interface
        2. 8.4.1.2 DDR LVDS Outputs
        3. 8.4.1.3 QDR LVDS Outputs
    5. 8.5 Programming
      1. 8.5.1 Device Configuration
      2. 8.5.2 Details of Serial Interface
        1. 8.5.2.1 Register Initialization
        2. 8.5.2.2 Serial Register Write
        3. 8.5.2.3 Serial Register Readout
    6. 8.6 Register Maps
      1. 8.6.1 Description of Serial Interface Registers
        1. 8.6.1.1  Register 6 (offset = 06h) [reset = 80h]
        2. 8.6.1.2  Register 7 (offset = 07h) [reset = 00h]
        3. 8.6.1.3  Register 8 (offset = 08h) [reset = 00h]
        4. 8.6.1.4  Register B (offset = 0Bh) [reset = 00h]
        5. 8.6.1.5  Register C (offset = 0Ch) [reset = 00h]
        6. 8.6.1.6  Register D (offset = 0Dh) [reset = 6Ch]
        7. 8.6.1.7  Register F (offset = 0Fh) [reset = 00h]
        8. 8.6.1.8  Register 10 (offset = 10h) [reset = 00h]
        9. 8.6.1.9  Register 11 (offset = 11h) [reset = 00h]
        10. 8.6.1.10 Register 12 (offset = 12h) [reset = 00h]
        11. 8.6.1.11 Register 13 (offset = 13h) [reset = 00h]
        12. 8.6.1.12 Register 14 (offset = 14h) [reset = 00h]
        13. 8.6.1.13 Register 15 (offset = 15h) [reset = 00h]
        14. 8.6.1.14 Register 16 (offset = 16h) [reset = 00h]
        15. 8.6.1.15 Register 17 (offset = 17h) [reset = 00h]
        16. 8.6.1.16 Register 18 (offset = 18h) [reset = 00h]
        17. 8.6.1.17 Register 1F (offset = 1Fh) [reset = 7Fh]
        18. 8.6.1.18 Register 20 (offset = 20h) [reset = 00h]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Analog Input
          1. 9.2.2.1.1 Drive Circuit Requirements
          2. 9.2.2.1.2 Driving Circuit
          3. 9.2.2.1.3 Using the ADS42LBx9 In Time-Domain, Low-Frequency Pulse Applications
        2. 9.2.2.2 Clock Input
        3. 9.2.2.3 SNR and Clock Jitter
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage AVDD3V –0.3 3.6 V
AVDD –0.3 2.1
DRVDD –0.3 2.1
Voltage between AGND and DGND –0.3 0.3 V
Voltage applied to input pins INA, INBP, INA, INBM –0.3 3 V
CLKINP, CLKINM –0.3 AVDD + 0.3
SYNCINP, SYNCINM –0.3 AVDD + 0.3
SCLK, SEN, SDATA, RESET, CTRL1, CTRL2 –0.3 3.9
Temperature Operating free-air, TA –40 +85 °C
Operating junction, TJ +125
Storage, Tstg –65 +150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(3)
MIN NOM MAX UNIT
SUPPLIES
AVDD Analog supply voltage 1.7 1.8 1.9 V
AVDD3V Analog buffer supply voltage 3.15 3.3 3.45 V
DRVDD Digital supply voltage 1.7 1.8 1.9 V
ANALOG INPUTS
VID Differential input voltage range Default after reset 2 VPP
Register programmable(1) 2.5
VICR Input common-mode voltage VCM ± 0.025 V
Maximum analog input frequency with 2.5-VPP input amplitude 250 MHz
Maximum analog input frequency with 2-VPP input amplitude 400 MHz
CLOCK INPUT
Input clock sample rate QDR interface 30 250 MSPS
DDR interface 10 250
Input clock amplitude differential
(VCLKP – VCLKM)
Sine wave, ac-coupled 0.3(2) 1.5 VPP
LVPECL, ac-coupled 1.6
LVDS, ac-coupled 0.7
LVCMOS, single-ended, ac-coupled 1.5 V
Input clock duty cycle 35% 50% 65%
DIGITAL OUTPUTS
CLOAD Maximum external load capacitance from each output pin to DRGND 3.3 pF
RLOAD Single-ended load resistance +50 Ω
TA Operating free-air temperature –40 +85 °C
(1) For details, refer to the Digital Gain section.
(2) Refer to the Performance vs Clock Amplitude curves, Figure 27 and Figure 28.
(3) After power-up, to reset the device for the first time, only use the RESET pin. Refer to the Register Initialization section.

6.4 Thermal Information

THERMAL METRIC(1) ADS42LBx9 UNIT
RGC (VQFN)
64 PINS
RθJA Junction-to-ambient thermal resistance 22.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 7.1 °C/W
RθJB Junction-to-board thermal resistance 2.5 °C/W
ψJT Junction-to-top characterization parameter 0.1 °C/W
ψJB Junction-to-board characterization parameter 2.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.2 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: ADS42LB69 (16-Bit)

Typical values are at TA = +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, 50% clock duty cycle, –1-dBFS differential analog input, and sampling rate = 250 MSPS, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V.
PARAMETER TEST CONDITIONS 2-VPP FULL-SCALE 2.5-VPP FULL-SCALE UNIT
MIN TYP MAX MIN TYP MAX
SNR Signal-to-noise ratio fIN = 10 MHz 73.9 75.8 dBFS
fIN = 70 MHz 73.7 75.5
fIN = 170 MHz 70.8 73.2 74.7
fIN = 230 MHz 72.8 74.1
SINAD Signal-to-noise and distortion ratio fIN = 10 MHz 73.7 75.1 dBFS
fIN = 70 MHz 73.6 75.3
fIN = 170 MHz 69.6 73.1 74.2
fIN = 230 MHz 72.5 73.4
SFDR Spurious-free dynamic range
(including second and third harmonic distortion)
fIN = 10 MHz 87 83 dBc
fIN = 70 MHz 90 88
fIN = 170 MHz 81 87 85
fIN = 230 MHz 86 83
THD Total harmonic distortion fIN = 10 MHz 86 82 dBc
fIN = 70 MHz 89 87
fIN = 170 MHz 78 85 82
fIN = 230 MHz 83 81
HD2 2nd-order harmonic distortion fIN = 10 MHz 97 95 dBc
fIN = 70 MHz 90 88
fIN = 170 MHz 81 87 85
fIN = 230 MHz 86 84
HD3 3rd-order harmonic distortion fIN = 10 MHz 87 83 dBc
fIN = 70 MHz 96 94
fIN = 170 MHz 81 91 85
fIN = 230 MHz 87 83
Worst spur
(other than second and third harmonics)
fIN = 10 MHz 102 103 dBc
fIN = 70 MHz 101 103
fIN = 170 MHz 87 101 101
fIN = 230 MHz 100 100
IMD Two-tone intermodulation distortion f1 = 46 MHz, f2 = 50 MHz,
each tone at –7 dBFS
97 94 dBFS
f1 = 185 MHz, f2 = 190 MHz,
each tone at –7 dBFS
94 90
Crosstalk 20-MHz, full-scale signal on channel under observation;
170-MHz, full-scale signal on other channel
100 100 dB
Input overload recovery Recovery to within 1% (of full-scale) for 6-dB overload with sine-wave input 1 1 Clock cycle
PSRR AC power-supply rejection ratio For 50-mVPP signal on AVDD supply, up to 10 MHz > 40 > 40 dB
ENOB Effective number of bits fIN = 170 MHz 11.85 12.03 LSBs
DNL Differential nonlinearity fIN = 170 MHz ±0.6 ±0.6 LSBs
INL Integrated nonlinearity fIN = 170 MHz ±3 ±8 ±3.5 LSBs

6.6 Electrical Characteristics: ADS42LB49 (14-Bit)

Typical values are at TA = +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, 50% clock duty cycle, –1-dBFS differential analog input, and sampling rate = 250 MSPS, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V.
PARAMETER TEST CONDITIONS 2-VPP FULL-SCALE 2.5-VPP FULL-SCALE UNIT
MIN TYP MAX MIN TYP MAX
SNR Signal-to-noise ratio fIN = 10 MHz 73.3 74.9 dBFS
fIN = 70 MHz 73.1 74.7
fIN = 170 MHz 69.5 72.7 74.1
fIN = 230 MHz 72.3 73.5
SINAD Signal-to-noise and distortion ratio fIN = 10 MHz 73.1 74.1 dBFS
fIN = 70 MHz 73.1 74.4
fIN = 170 MHz 68.5 72.6 73.6
fIN = 230 MHz 72 72.9
SFDR Spurious-free dynamic range
(including second and third harmonic distortion)
fIN = 10 MHz 87 82 dBc
fIN = 70 MHz 90 88
fIN = 170 MHz 79 87 85
fIN = 230 MHz 86 83
THD Total harmonic distortion fIN = 10 MHz 86 81 dBc
fIN = 70 MHz 89 87
fIN = 170 MHz 76 85 82
fIN = 230 MHz 83 81
HD2 2nd-order harmonic distortion fIN = 10 MHz 97 95 dBc
fIN = 70 MHz 90 88
fIN = 170 MHz 79 87 85
fIN = 230 MHz 86 84
HD3 3rd-order harmonic distortion fIN = 10 MHz 87 82 dBc
fIN = 70 MHz 96 94
fIN = 170 MHz 79 91 85
fIN = 230 MHz 87 83
Worst spur
(other than second and third harmonics)
fIN = 10 MHz 104 103 dBc
fIN = 70 MHz 101 103
fIN = 170 MHz 87 100 101
fIN = 230 MHz 99 100
IMD Two-tone intermodulation distortion f1 = 46 MHz, f2 = 50 MHz,
each tone at –7 dBFS
99 95 dBFS
f1 = 185 MHz, f2 = 190 MHz,
each tone at –7 dBFS
93 93
Crosstalk 20-MHz, full-scale signal on channel under observation;
170-MHz, full-scale signal on other channel
100 90 dB
Input overload recovery Recovery to within 1% (of full-scale) for 6-dB overload with sine-wave input 1 1 Clock cycle
PSRR AC power-supply rejection ratio For a 50-mVPP signal on AVDD supply, up to 10 MHz > 40 > 40 dB
ENOB Effective number of bits fIN = 170 MHz 11.76 11.93 LSBs
DNL Differential nonlinearity fIN = 170 MHz ±0.15 ±0.15 LSBs
INL Integrated nonlinearity fIN = 170 MHz ±0.75 ±3 ±0.9 LSBs

6.7 Electrical Characteristics: General

Typical values are at +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, 50% clock duty cycle, –1-dBFS differential analog input, and sampling rate = 250 MSPS, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
VID Differential input voltage range Default (after reset) 2 VPP
Register programmed(1) 2.5
Differential input resistance (at 170 MHz) 1.2
Differential input capacitance (at 170 MHz) 4 pF
Analog input bandwidth With 50-Ω source impedance, and 50-Ω termination 900 MHz
VCM Common-mode output voltage 1.9 V
VCM output current capability 10 mA
DC ACCURACY
Offset error –20 20 mV
EGREF Gain error as a result of internal reference inaccuracy alone ±2 %FS
EGCHAN Gain error of channel alone –5 %FS
Temperature coefficient of EGCHAN 0.01 Δ%/°C
POWER SUPPLY
IAVDD Analog supply current 141 182 mA
IAVDD3V Analog buffer supply current 302 340 mA
IDRVDD Digital and output buffer supply current External 100-Ω differential termination on LVDS outputs 219 245 mA
Analog power 253 mW
Analog buffer power 996 mW
Power consumption (includes digital blocks and output buffers) External 100-Ω differential termination on LVDS outputs 393 mW
Total power 1.64 1.85 W
Global power-down (both channels) 160 mW
(1) Refer to the Serial Interface section.

6.8 Digital Characteristics

The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level '0' or '1'. AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, and, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, CTRL1, CTRL2)(1)
VIH High-level input voltage All digital inputs support 1.8-V and 3.3-V CMOS logic levels 1.3 V
VIL Low-level input voltage 0.4 V
IIH High-level input current RESET, SDATA, SCLK, CTRL1, CTRL2(2) VHIGH = 1.8 V 10 µA
SEN(3) VHIGH = 1.8 V 0
IIL Low-level input current RESET, SDATA, SCLK, CTRL1, CTRL2 VLOW = 0 V 0 µA
SEN VLOW = 0 V 10
DIGITAL OUTPUTS, CMOS INTERFACE (OVRA, OVRB, SDOUT)
VOH High-level output voltage DRVDD – 0.1 DRVDD V
VOL Low-level output voltage 0 0.1 V
DIGITAL OUTPUTS, LVDS INTERFACE
VODH High-level output differential voltage With an external
100-Ω termination
250 350 500 mV
VODL Low-level output differential voltage With an external
100-Ω termination
–500 –350 –250 mV
VOCM Output common-mode voltage 1.05 V
(1) SCLK, SDATA, and SEN function as digital input pins in serial configuration mode.
(2) SDATA and SCLK have an internal 150-kΩ pull-down resistor.
(3) SEN has an internal 150-kΩ pull-up resistor to AVDD. Because the pull-up resistor is weak, SEN can also be driven by 1.8-V or 3.3-V CMOS buffers.

6.9 Timing Requirements: General

Typical values are at +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, sampling frequency = 250 MSPS, sine wave input clock, CLOAD = 3.3 pF, and RLOAD = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.7 V to 1.9 V.
MIN TYP MAX UNIT
tA Aperture delay 0.5 0.7 1.1 ns
Aperture delay matching between two channels of the same device ±70 ps
Variation of aperture delay between two devices at the same temperature and supply voltage ±150 ps
tJ Aperture jitter 85 fS rms
Wakeup time Time to valid data after coming out of STANDBY mode 50 100 µs
Time to valid data after coming out of GLOBAL power-down mode (in this mode, both channels power-down) 250 1000 µs
ADC latency(3) Default latency after reset 14 Clock cycles
Normal OVR latency 14 Clock cycles
Fast OVR latency 9 Clock cycles
tSU_SYNCIN Setup time for SYNCIN, referenced to input clock rising edge 400 ps
tH_SYNCIN Hold time for SYNCIN, referenced to input clock rising edge 100 ps

6.10 Timing Requirements: DDR LVDS Mode(1)

Typical values are at +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, sampling frequency = 250 MSPS, sine wave input clock, CLOAD = 3.3 pF, and RLOAD = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, and DRVDD = 1.7 V to 1.9 V.
MIN TYP MAX UNIT
tSU Data setup time: data valid to zero-crossing of differential output clock
(CLKOUTP – CLKOUTM)(2)
0.62 0.82 ns
tHO Data hold time: zero-crossing of differential output clock (CLKOUTP – CLKOUTM) to data becoming invalid(2) 0.54 0.64 ns
tPDI Clock propagation delay: input clock rising edge cross-over to output clock (CLKOUTP – CLKOUTM) rising edge cross-over 8 10.5 13 ns
LVDS bit clock duty cycle: duty cycle of differential clock (CLKOUTP – CLKOUTM) 52%
tFALL,
tRISE
Data fall time, data rise time: rise time measured from –100 mV to +100 mV,
10 MSPS ≤ sampling frequency ≤ 250 MSPS
0.14 ns
tCLKRISE,
tCLKFALL
Output clock rise time, output clock fall time: Rise time measured from
–100 mV to +100 mV, 10 MSPS ≤ sampling frequency ≤ 250 MSPS
0.18 ns
(1) Measurements are done with a transmission line of a 100-Ω characteristic impedance between the device and load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.
(2) Data valid refers to a logic high of +100 mV and a logic low of –100 mV.
(3) Overall latency = ADC latency + tPDI.

Table 1. DDR LVDS Timings at Lower Sampling Frequencies(1)

SAMPLING FREQUENCY (MSPS) SETUP TIME HOLD TIME CLOCK PROPAGATION
DELAY
UNIT
tSU tHO tPDI
MIN TYP MAX MIN TYP MAX MIN TYP MAX
80 2.40 2.96 2.16 2.82 9 11.9 15 ns
120 1.57 1.92 1.40 1.84 8 11.1 14
160 1.17 1.40 1.02 1.36 8 10.6 13
200 0.82 1.07 0.72 1.02 8 10.5 13
230 0.69 0.91 0.61 0.84 8 10.5 13
(1) See Figure 73 for a timing diagram in DDR LVDS mode.

6.11 Timing Requirements: QDR LVDS Mode(4)(1)

Typical values are at +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, sampling frequency = 250 MSPS, sine-wave input clock, CLOAD = 3.3 pF(2), and RLOAD = 100 Ω(3), unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, and DRVDD = 1.7 V to 1.9 V.
MIN TYP MAX UNIT
tSU Data setup time(5)(6): data valid to DxCLKP, DxCLKM zero-crossing 0.23 0.31 ns
tH Data hold time(5)(6): DxCLKP, DxCLKM zero-crossing to data becoming invalid 0.16 0.29 ns
LVDS bit clock duty cycle: differential bit clock duty cycle (DxCLKP, DxCLKM) 50%
tPDI Clock propagation delay: input clock rising edge cross-over to output frame clock
(DxFRAMEP-DxFRAMEM) rising edge cross-over
7 10.1 13 ns
tRISE, tFALL Data rise and fall time: rise time measured from –100 mV to +100 mV 0.18 ns
tCLKRISE, tCLKFALL Output clock rise and fall time: rise time measured from –100 mV to +100 mV 0.2 ns
(1) Timing parameters are ensured by design and characterization and are not tested in production.
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.
(3) RLOAD is the differential load resistance between the LVDS output pair.
(4) Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.
(5) Data valid refers to a logic high of +100 mV and a logic low of –100 mV.
(6) The setup and hold times of a channel are measured with respect to the same channel output clock.

Table 2. QDR LVDS Timings at Lower Sampling Frequencies(1)

SAMPLING FREQUENCY (MSPS) SETUP TIME HOLD TIME CLOCK PROPAGATION
DELAY
UNIT
tSU tHO tPDI
MIN TYP MAX MIN TYP MAX MIN TYP MAX
80 1.06 1.21 0.84 1.29 6 9.3 12 ns
120 0.63 0.77 0.66 0.88 7 9.5 13
160 0.43 0.55 0.39 0.61 7 9.7 13
200 0.31 0.42 0.28 0.47 7 9.8 13
230 0.24 0.34 0.17 0.36 7 9.9 13
(1) See Figure 74 for a timing diagram in QDR LVDS mode.

6.12 Typical Characteristics: ADS42LB69

Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, QDR interface, AVDD3V = 3.3 V, AVDD = DRVDD = 1.8 V, –1-dBFS differential input, and 32k-point FFT, unless otherwise noted.
ADS42LB49 ADS42LB69 G001_SLAS904.png
Figure 1. FFT for 10-MHz Input Signal
ADS42LB49 ADS42LB69 G003_SLAS904.png
Figure 3. FFT for 300-MHz Input Signal
ADS42LB49 ADS42LB69 G005_SLAS904.png
Figure 5. FFT for 170-MHz Input Signal
(2.5-VPP Full-Scale)
ADS42LB49 ADS42LB69 G007_SLAS904.png
Figure 7. FFT for Two-Tone Input Signal
(At –7 dBFS, 46 MHz and 50 MHz)
ADS42LB49 ADS42LB69 G009_SLAS904.png
Figure 9. FFT for Two-Tone Input Signal
(At –7 dBFS, 185 MHz and 190 MHz)
ADS42LB49 ADS42LB69 G011_SLAS904.png
Figure 11. IMD3 vs Input Amplitude
(46 MHz and 50 MHz)
ADS42LB49 ADS42LB69 G013_SLAS904.png
Figure 13. SFDR vs Input Frequency
ADS42LB49 ADS42LB69 G015_SLAS904.png
Figure 15. SFDR vs Digital Gain
ADS42LB49 ADS42LB69 G017_SLAS904.png
Figure 17. Performance Across Input Amplitude
(70 MHz)
ADS42LB49 ADS42LB69 G019_SLAS904.png
Figure 19. Performance vs Input Common-Mode Voltage
(70 MHz)
ADS42LB49 ADS42LB69 G021_SLAS904.png
Figure 21. SFDR vs AVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G023_SLAS904.png
Figure 23. SFDR vs AVDD_BUF Supply and Temperature (170 MHz)
ADS42LB49 ADS42LB69 G025_SLAS904.png
Figure 25. SFDR vs DRVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G027_SLAS904.png
Figure 27. Performance vs Clock Amplitude
(70 MHz)
ADS42LB49 ADS42LB69 G029_SLAS904.png
Figure 29. Performance vs Clock Duty Cycle
(70 MHz)
ADS42LB49 ADS42LB69 G002_SLAS904.png
Figure 2. FFT for 170-MHz Input Signal
ADS42LB49 ADS42LB69 G004_SLAS904.png
Figure 4. FFT for 10-MHz Input Signal
(2.5-VPP Full-Scale)
ADS42LB49 ADS42LB69 G006_SLAS904.png
Figure 6. FFT for 300-MHz Input Signal
(2.5-VPP Full-Scale)
ADS42LB49 ADS42LB69 G008_SLAS904.png
Figure 8. FFT for Two-Tone Input Signal
(At –36 dBFS, 46 MHz and 50 MHz)
ADS42LB49 ADS42LB69 G010_SLAS904.png
Figure 10. FFT for Two-Tone Input Signal
(At –36 dBFS, 185 MHz and 190 MHz)
ADS42LB49 ADS42LB69 G012_SLAS904.png
Figure 12. IMD3 vs Input Amplitude
(185 MHz and 190 MHz)
ADS42LB49 ADS42LB69 G014_SLAS904.png
Figure 14. SNR vs Input Frequency
ADS42LB49 ADS42LB69 G016_SLAS904.png
Figure 16. SNR vs Digital Gain
ADS42LB49 ADS42LB69 G018_SLAS904.png
Figure 18. Performance Across Input Amplitude
(170 MHz)
ADS42LB49 ADS42LB69 G020_SLAS904.png
Figure 20. Performance vs Input Common-Mode Voltage (170 MHz)
ADS42LB49 ADS42LB69 G022_SLAS904.png
Figure 22. SNR vs AVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G024_SLAS904.png
Figure 24. SNR vs AVDD_BUF Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G026_SLAS904.png
Figure 26. SNR vs DRVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G028_SLAS904.png
Figure 28. Performance vs Clock Amplitude
(170 MHz)
ADS42LB49 ADS42LB69 G030_SLAS904.png
Figure 30. Performance vs Clock Duty Cycle
(170 MHz)

6.13 Typical Characteristics: ADS42LB49

Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD3V = 3.3 V, AVDD = DRVDD = 1.8 V, –1-dBFS differential input, and 32k-point FFT, unless otherwise noted.
ADS42LB49 ADS42LB69 G031_SLAS904.png
Figure 31. FFT for 10-MHz Input Signal
ADS42LB49 ADS42LB69 G033_SLAS904.png
Figure 33. FFT for 300-MHz Input Signal
ADS42LB49 ADS42LB69 G035_SLAS904.png
Figure 35. FFT for 170-MHz Input Signal
(2.5-VPP Full-Scale)
ADS42LB49 ADS42LB69 G037_SLAS904.png
Figure 37. FFT for Two-Tone Input Signal
(At –7 dBFS, 46 MHz and 50 MHz)
ADS42LB49 ADS42LB69 G039_SLAS904.png
Figure 39. FFT for Two-Tone Input Signal
(At –7 dBFS, 185 MHz and 190 MHz)
ADS42LB49 ADS42LB69 G041_SLAS904.png
Figure 41. IMD3 vs Input Amplitude
(46 MHz and 50 MHz)
ADS42LB49 ADS42LB69 G043_SLAS904.png
Figure 43. SFDR vs Input Frequency
ADS42LB49 ADS42LB69 G045_SLAS904.png
Figure 45. SFDR vs Digital Gain
ADS42LB49 ADS42LB69 G047_SLAS904.png
Figure 47. Performance Across Input Amplitude
(70 MHz)
ADS42LB49 ADS42LB69 G049_SLAS904.png
Figure 49. Performance vs Input Common-Mode Voltage
(70 MHz)
ADS42LB49 ADS42LB69 G051_SLAS904.png
Figure 51. SFDR vs AVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G053_SLAS904.png
Figure 53. SFDR vs AVDD_BUF Supply and Temperature (170 MHz)
ADS42LB49 ADS42LB69 G055_SLAS904.png
Figure 55. SFDR vs DRVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G057_SLAS904.png
Figure 57. Performance vs Clock Amplitude
(70 MHz)
ADS42LB49 ADS42LB69 G059_SLAS904.png
Figure 59. Performance vs Clock Duty Cycle
(70 MHz)
ADS42LB49 ADS42LB69 G032_SLAS904.png
Figure 32. FFT for 170-MHz Input Signal
ADS42LB49 ADS42LB69 G034_SLAS904.png
Figure 34. FFT for 10-MHz Input Signal
(2.5-VPP Full-Scale)
ADS42LB49 ADS42LB69 G036_SLAS904.png
Figure 36. FFT for 300-MHz Input Signal
(2.5-VPP Full-Scale)
ADS42LB49 ADS42LB69 G038_SLAS904.png
Figure 38. FFT for Two-Tone Input Signal
(At –36 dBFS, 46 MHz and 50 MHz)
ADS42LB49 ADS42LB69 G040_SLAS904.png
Figure 40. FFT for Two-Tone Input Signal
(At –36 dBFS, 185 MHz and 190 MHz)
ADS42LB49 ADS42LB69 G042_SLAS904.png
Figure 42. IMD3 vs Input Amplitude
(185 MHz and 190 MHz)
ADS42LB49 ADS42LB69 G044_SLAS904.png
Figure 44. SNR vs Input Frequency
ADS42LB49 ADS42LB69 G046_SLAS904.png
Figure 46. SNR vs Digital Gain
ADS42LB49 ADS42LB69 G048_SLAS904.png
Figure 48. Performance Across Input Amplitude
(170 MHz)
ADS42LB49 ADS42LB69 G050_SLAS904.png
Figure 50. Performance vs Input Common-Mode Voltage (170 MHz)
ADS42LB49 ADS42LB69 G052_SLAS904.png
Figure 52. SNR vs AVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G054_SLAS904.png
Figure 54. SNR vs AVDD_BUF Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G056_SLAS904.png
Figure 56. SNR vs DRVDD Supply and Temperature
(170 MHz)
ADS42LB49 ADS42LB69 G058_SLAS904.png
Figure 58. Performance vs Clock Amplitude
(170 MHz)
ADS42LB49 ADS42LB69 G060_SLAS904.png
Figure 60. Performance vs Clock Duty Cycle
(170 MHz)

6.14 Typical Characteristics: Common

Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD3V = 3.3 V, AVDD = DRVDD = 1.8 V, –1-dBFS differential input, and 32k-point FFT, unless otherwise noted.
ADS42LB49 ADS42LB69 G061_SLAS904.png
Figure 61. CMRR FFT
ADS42LB49 ADS42LB69 G063_SLAS904.png
Figure 63. PSRR FFT for AVDD Supply
ADS42LB49 ADS42LB69 G065_SLAS904.png
Figure 65. Total Power vs Sampling Frequency
ADS42LB49 ADS42LB69 G062_SLAS904.png
Figure 62. CMRR vs Test Signal Frequency
ADS42LB49 ADS42LB69 G064_SLAS904.png
Figure 64. PSRR vs Test Signal Frequency

6.15 Typical Characteristics: Contour

Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD3V = 3.3 V, AVDD = DRVDD = 1.8 V, –1-dBFS differential input, and 65k-point FFT, unless otherwise noted.

6.15.1 Spurious-Free Dynamic Range (SFDR): General

ADS42LB49 ADS42LB69 G067_SLAS904.png
Figure 66. SFDR (0-dB Gain)
ADS42LB49 ADS42LB69 G068_SLAS904.png
Figure 67. SFDR (6-dB Gain)

6.15.2 Signal-to-Noise Ratio (SNR): ADS42LB69

ADS42LB49 ADS42LB69 G069_SLAS904.png
Figure 68. SNR (0-dB Gain, 16 Bits)
ADS42LB49 ADS42LB69 G070_SLAS904.png
Figure 69. SNR (6-dB Gain, 16 Bits)

6.15.3 Signal-to-Noise Ratio (SNR): ADS42LB49

ADS42LB49 ADS42LB69 G071_SLAS904.png
Figure 70. SNR (0-dB Gain, 14 Bits)
ADS42LB49 ADS42LB69 G072_SLAS904.png
Figure 71. SNR (6-dB Gain, 14 Bits)