SBVS014C August   2000  – August 2021 DCV010505 , DCV010505D , DCV010512 , DCV010512D , DCV010515 , DCV010515D , DCV011512D , DCV011515D , DCV012405 , DCV012415D

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1  Isolation
        1. 8.3.1.1 Operation or Functional Isolation
        2. 8.3.1.2 Basic or Enhanced Isolation
        3. 8.3.1.3 Working Voltage
        4. 8.3.1.4 Isolation Voltage Rating
        5. 8.3.1.5 Repeated High-Voltage Isolation Testing
      2. 8.3.2  Power Stage
      3. 8.3.3  Oscillator and Watchdog Circuit
      4. 8.3.4  Thermal Shutdown
      5. 8.3.5  Synchronization
      6. 8.3.6  Light Load Operation (< 10%)
      7. 8.3.7  Load Regulation (10% to 100%)
      8. 8.3.8  Construction
      9. 8.3.9  Thermal Management
      10. 8.3.10 Power-Up Characteristics
    4. 8.4 Device Functional Modes
      1. 8.4.1 Disable and Enable (SYNCIN Pin)
      2. 8.4.2 Decoupling
        1. 8.4.2.1 Ripple Reduction
        2. 8.4.2.2 Connecting the DCV01 in Series
        3. 8.4.2.3 Connecting the DCV01 in Parallel
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Capacitor
        2. 9.2.2.2 Output Capacitor
        3. 9.2.2.3 SYNCIN Pin
        4. 9.2.2.4 PCB Design
        5. 9.2.2.5 Decoupling Ceramic Capacitors
        6. 9.2.2.6 Input Capacitor and the Effects of ESR
        7. 9.2.2.7 Ripple and Noise
          1. 9.2.2.7.1 Output Ripple Calculation Example
        8. 9.2.2.8 Dual DCV01 Output Voltage
        9. 9.2.2.9 Optimizing Performance
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Due to the high power density of these devices, provide ground planes on the input and output.

Figure 11-1 shows a schematic for two DCV01 devices. Figure 11-2 and Figure 11-3 show a typical layout for two through-hole PDIP devices.

Input power and ground planes provide a low-impedance path for the input power. For the output, the COM signal connects through a ground plane, while the connections for the positive and negative voltage outputs conduct through wide traces to minimize losses.

The output must be taken from the device using ground and power planes, thereby ensuring minimum losses.

The location of the decoupling capacitors in close proximity to their respective pins ensures low losses due to the effects of stray inductance, thus improving the ripple performance. This location is of particular importance to the input decoupling capacitor, because this capacitor supplies the transient current associated with the fast switching waveforms of the power drive circuits.

Allow the unused SYNC pin, to remain configured as a floating pad. It is advisable to place a guard ring (connected to input ground) or annulus connected around this pin to avoid any noise pickup. When connecting a SYNC pin to one or more SYNC design the linking trace to be short and narrow to avoid stray capacitance. Ensure that no other trace is in close proximity to this trace SYNC trace to decrease the stray capacitance on this pin. The stray capacitance affects the performance of the oscillator.