DLPS031C December   2013  – August 2015 DLPC6401

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Electrical Characteristics (Normal Mode)
    7. 6.7  System Oscillators Timing Requirements
    8. 6.8  Test and Reset Timing Requirements
    9. 6.9  JTAG Interface: I/O Boundary Scan Application Timing Requirements
    10. 6.10 Port 1 Input Pixel Interface Timing Requirements
    11. 6.11 Port 2 Input Pixel Interface (FPD-Link Compatible LVDS Input) Timing Requirements
    12. 6.12 Synchronous Serial Port (SSP) Interface Timing Requirements
    13. 6.13 Programmable Output Clocks Switching Characteristics
    14. 6.14 Synchronous Serial Port (SSP) Interface Switching Characteristics
    15. 6.15 JTAG Interface: I/O Boundary Scan Application Switching Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 System Reset Operation
        1. 7.3.1.1 Power-Up Reset Operation
        2. 7.3.1.2 System Reset Operation
        3. 7.3.1.3 Spread Spectrum Clock Generator Support
        4. 7.3.1.4 GPIO Interface
        5. 7.3.1.5 Source Input Blanking
        6. 7.3.1.6 Video and Graphics Processing Delay
      2. 7.3.2 Program Memory Flash/SRAM Interface
        1. 7.3.2.1 Calibration and Debug Support
        2. 7.3.2.2 Board-Level Test Support
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Recommended MOSC Crystal Oscillator Configuration
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 System Power Regulation
    2. 9.2 System Power-Up Sequence
    3. 9.3 Power-On Sense (POSENSE) Support
    4. 9.4 System Environment and Defaults
      1. 9.4.1 DLPC6401 System Power-Up and Reset Default Conditions
      2. 9.4.2 1.2-V System Power
      3. 9.4.3 1.8-V System Power
      4. 9.4.4 1.9-V System Power
      5. 9.4.5 3.3-V System Power
      6. 9.4.6 FPD-Link Input LVDS System Power
      7. 9.4.7 Power Good (PWRGOOD) Support
      8. 9.4.8 5-V Tolerant Support
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB Layout Guidelines for Internal ASIC Power
      2. 10.1.2 PCB Layout Guidelines for Quality Auto-Lock Performance
      3. 10.1.3 DMD Interface Considerations
      4. 10.1.4 General Handling Guidelines for Unused CMOS-Type Pins
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
        1. 11.1.1.1 Video Timing Parameter Definitions
        2. 11.1.1.2 Device Marking
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)

Calibration and Debug Support

The DLPC6401 device contains a test point output port, TSTPT_(7:0), which provides selected system calibration support as well as ASIC debug support. These test points are inputs while reset is applied and switch to outputs when reset is released. The state of these signals is sampled upon the release of system reset and the captured value configures the test mode until the next time reset is applied. Each test point includes an internal pulldown resistor and thus external pullups are used to modify the default test configuration. The default configuration (x00) corresponds to the TSTPT(7:0) outputs being driven low for reduce switching activity during normal operation. For maximum flexibility, TI recommends an option to jumper to an external pullup for TSTPT(0). Note that adding a pullup to TSTPT(7:1) may have adverse affects for normal operation and TI does not recommend it. Note that these external pullups are sampled only after a 0-to-1 transition on POSENSE and thus changing their configuration after reset has been released does not have any affect until the next time reset is asserted and released. Table 6 defines the test mode selection for two programmable scenarios defined by TSTPT_(0):

Table 6. Test Mode Selection

TSTPT(3:0) CAPTURE VALUE NO SWITCHING ACTIVITY ARM AHB DEBUG SIGNAL SET
x0 x1
TSTPT(0) 0 ARM9 HREADY
TSTPT(1) 0 HSEL for all external program memory
TSTPT(2) 0 ARM9 HTRANS(1)
TSTPT(3) 0 PFC HREADY OUT (ARM9 R/W)
TSTPT(4) 0 PFC EMI(2) request (ARM9 R/W)
TSTPT(5) 0 PFC EMI(2) request accept (ARM9 R/W)
TSTPT(6) 0 PFC EMI(2) access done (ARM9 R/W)
TSTPT(7) 0 ARM9 Gate_The_Clk
These are only the default output selections. Software can reprogram the selection at any time.
PFC EMI is the parallel flash controller external memory interface