SLLSEQ5A September   2016  – December 2016 ISO5452-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Function
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Ratings
    6. 7.6  Insulation Specifications
    7. 7.7  Safety-Related Certifications
    8. 7.8  Safety Limiting Values
    9. 7.9  Electrical Characteristics
    10. 7.10 Switching Characteristics
    11. 7.11 Insulation Characteristics Curves
    12. 7.12 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Supply and Active Miller Clamp
      2. 9.3.2 Active Output Pull-down
      3. 9.3.3 Undervoltage Lockout (UVLO) with Ready (RDY) Pin Indication Output
      4. 9.3.4 Soft Turn-Off, Fault (FLT) and Reset (RST)
      5. 9.3.5 Short Circuit Clamp
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1  Recommended ISO5452-Q1 Application Circuit
        2. 10.2.2.2  FLT and RDY Pin Circuitry
        3. 10.2.2.3  Driving the Control Inputs
        4. 10.2.2.4  Local Shutdown and Reset
        5. 10.2.2.5  Global-Shutdown and Reset
        6. 10.2.2.6  Auto-Reset
        7. 10.2.2.7  DESAT Pin Protection
        8. 10.2.2.8  DESAT Diode and DESAT Threshold
        9. 10.2.2.9  Determining the Maximum Available, Dynamic Output Power, POD-max
        10. 10.2.2.10 Example
        11. 10.2.2.11 Higher Output Current Using an External Current Buffer
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 PCB Material
    3. 12.3 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC1 Supply voltage input side GND1 – 0.3 6 V
VCC2 Positive supply voltage output side (VCC2 – GND2) –0.3 35 V
VEE2 Negative supply voltage output side (VEE2 – GND2) –17.5 0.3 V
V(SUP2) Total supply output voltage (VCC2 – VEE2) –0.3 35 V
V(OUTH) Positive gate driver output voltage VEE2 – 0.3 VCC2 + 0.3 V
V(OUTL) Negative gate driver output voltage VEE2 – 0.3 VCC2 + 0.3 V
I(OUTH) Gate driver high output current Gate driver high output current
(maximum pulse width = 10 μs,
maximum duty cycle = 0.2%)
2.7 A
I(OUTL) Gate driver low output current Gate driver high output current
(maximum pulse width = 10 μs,
maximum duty cycle = 0.2%)
5.5 A
V(LIP) Voltage at IN+, IN–, FLT, RDY, RST GND1 - 0.3 VCC1 + 0.3 V
I(LOP) Output current of FLT, RDY 10 mA
V(DESAT) Voltage at DESAT GND2 - 0.3 VCC2 + 0.3 V
V(CLAMP) Clamp voltage VEE2 – 0.3 VCC2 + 0.3 V
TJ Junction temperature –40 150 °C
TSTG Storage temperature –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±4000 V
Charged-device model (CDM), per AEC Q100-011 ±1500
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC1 Supply voltage input side 2.25 5.5 V
VCC2 Positive supply voltage output side (VCC2 – GND2) 15 30 V
VEE2 Negative supply voltage output side (VEE2 – GND2) –15 0 V
V(SUP2) Total supply voltage output side (VCC2 – VEE2) 15 30 V
VIH High-level input voltage (IN+, IN–, RST) 0.7 × VCC1 VCC1 V
VIL Low-level input voltage (IN+, IN–, RST) 0 0.3 × VCC1 V
tUI Pulse width at IN+, IN– for full output (CLOAD = 1 nF) 40 ns
tRST Pulse width at RST for resetting fault latch 800 ns
TA Ambient temperature –40 125 °C

Thermal Information

THERMAL METRIC(1) ISO5452-Q1 UNIT
DW (SOIC)
16 PINS
RθJA Junction-to-ambient thermal resistance 99.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 48.5 °C/W
RθJB Junction-to-board thermal resistance 56.5 °C/W
ψJT Junction-to-top characterization parameter 29.2 °C/W
ψJB Junction-to-board characterization parameter 56.5 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

Power Ratings

VCC1 = 5.5 V, VCC2 = 30 V, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PD Maximum power dissipation(1) 1255 mW
PID Maximum input power dissipation 175 mW
POD Maximum output power dissipation 1080 mW
Full chip power dissipation is derated 10.04 mW/°C beyond 25°C ambient temperature. At 125°C ambient temperature, a maximum of 251 mW total power dissipation is allowed. Power dissipation can be optimized depending on ambient temperature and board design, while ensuring that Junction temperature does not exceed 150°C.

Insulation Specifications

PARAMETER TEST CONDITIONS VALUE UNIT
GENERAL
CLR External clearance(1) Shortest terminal-to-terminal distance through air >8 mm
CPG External creepage(1) Shortest terminal-to-terminal distance across the package surface >8 mm
DTI Distance through the insulation Minimum internal gap (internal clearance) >21 μm
CTI Tracking resistance (comparative tracking index) DIN EN 60112 (VDE 0303-11); IEC 60112; >600 V
Material Group According to IEC 60664-1; UL 746A I
Overvoltage category (according to IEC 60664-1) Rated Mains Voltage ≤ 300 VRMS I-IV
Rated Mains Voltage ≤ 600 VRMS I-III
Rated Mains Voltage ≤ 1000 VRMS I-II
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar) 1420 VPK
VIOWM Maximum isolation working voltage AC voltage. Time dependent dielectric breakdown (TDDB) Test, see Figure 1 1000 VRMS
DC voltage 1420 VDC
VIOTM Maximum transient isolation voltage VTEST = VIOTM, t = 60 s (qualification), t = 1 s (100% production) 8000 VPK
VIOSM Maximum surge isolation voltage(3) Test method per IEC 60065, 1.2/50 μs waveform, VTEST = 1.6 × VIOSM = 10000 VPK (qualification)(3) 6250 VPK
qpd Apparent charge(4) Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 1704 VPK, tm = 10 s ≤5 pC
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 2272 VPK, tm = 10 s ≤5
Method b1: At routine test (100% production) and preconditioning (type test), Vini = VIOTM, tini = 60 s; Vpd(m) = 1.875× VIORM = 2663 VPK, tm = 10 s ≤5
RIO Isolation resistance, input to output(5) VIO = 500 V, TA = 25°C > 1012 Ω
VIO = 500 V, 100°C ≤ TA ≤ 125°C > 1011 Ω
VIO = 500 V at TS = 150°C > 109 Ω
CIO Barrier capacitance, input to output(5) VIO = 0.4 x sin (2πft), f = 1 MHz 1 pF
Pollution degree 2
UL 1577
VISO Withstanding Isolation voltage VTEST = VISO, t = 60 s (qualification),
VTEST = 1.2 × VISO = 6840 VRMS,
t = 1 s (100% production)
5700 VRMS
Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
Apparent charge is electrical discharge caused by a partial discharge (pd).
All pins on each side of the barrier tied together creating a two-terminal device

Safety-Related Certifications

VDE CSA UL CQC TUV
Certified according to DIN V VDE V 0884-10
(VDE V 0884-10):2006-12 and DIN EN 60950-1
(VDE 0805 Teil 1):2011-01
Certified according to CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1 Certified according to UL 1577 Component Recognition Program Certified according to GB 4943.1-2011 Certified according to
EN 61010-1:2010 (3rd Ed) and
EN 60950-1:2006/A11:2009/A1:2010/
A12:2011/A2:2013
Reinforced Insulation Maximum Transient isolation voltage, 8000 VPK;
Maximum surge isolation voltage, 6250 VPK,
Maximum repetitive peak isolation voltage, 1420 VPK
Isolation Rating of 5700 VRMS;
Reinforced insulation per CSA 60950- 1- 07+A1+A2 and IEC 60950-1 (2nd Ed.), 800 VRMS max working voltage (pollution degree 2, material group I) ;

2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) max working voltage
Single Protection, 5700 VRMS (1) Reinforced Insulation, Altitude ≤ 5000m, Tropical climate, 400 VRMS maximum working voltage 5700 VRMS Reinforced insulation per
EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS

5700 VRMS Reinforced insulation per
EN 60950-1:2006/A11:2009/A1:2010/
A12:2011/A2:2013 up to working voltage of 800 VRMS
Certification completed
Certificate number: 40040142
Master contract number: 220991 Certification completed
File number: E181974
Certification completed
Certificate number: CQC16001141761
Certification completed
Client ID number: 77311
Production tested ≥ 6840 VRMS for 1 second in accordance with UL 1577.

Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IS Safety input, output or supply current RθJA = 99.6°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 2 456 mA
RθJA = 99.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 2 346
RθJA = 99.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 2 228
RθJA = 99.6°C/W, VI = 15 V, TJ = 150°C, TA = 25°C, see Figure 2 484
RθJA = 99.6°C/W, VI = 30 V, TJ = 150°C, TA = 25°C, see Figure 2 42
PS Safety input, output, or total power RθJA = 99.6°C/W, TJ = 150°C, TA = 25°C, see Figure 3 1255(1) mW
TS Safety temperature 150 °C
Input, output, or the sum of input and output power should not exceed this value

The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

Electrical Characteristics

Over recommended operating conditions unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOLTAGE SUPPLY
VIT+(UVLO1) Positive-going UVLO1 threshold voltage input side (VCC1 – GND1) 2.25 V
VIT-(UVLO1) Negative-going UVLO1 threshold voltage input side (VCC1 – GND1) 1.7 V
VHYS(UVLO1) UVLO1 Hysteresis voltage (VIT+ – VIT–) input side TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 0.2 V
VIT+(UVLO2) Positive-going UVLO2 threshold voltage output side (VCC2 – GND2) 13 V
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 12
VIT-(UVLO2) Negative-going UVLO2 threshold voltage output side (VCC2 – GND2) 9.5 V
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 11
VHYS(UVLO2) UVLO2 Hysteresis voltage (VIT+ – VIT–) output side TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 1 V
IQ1 Input supply quiescent current 4.5 mA
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 2.8
IQ2 Output supply quiescent current 6 mA
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 3.6
LOGIC I/O
VIT+(IN,RST) Positive-going input threshold voltage (IN+, IN–, RST) 0.7 × VCC1 V
VIT-(IN,RST) Negative-going input threshold voltage (IN+, IN–, RST) 0.3 × VCC1 V
VHYS(IN,RST) Input hysteresis voltage (IN+, IN–, RST) TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 0.15 × VCC1 V
IIH High-level input leakage at (IN+)(1) IN+ = VCC1, TA = 25°C, VCC1 = 5 V,
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
100 µA
IIL Low-level input leakage at (IN–, RST)(2) IN– = GND1, RST = GND1, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V –100 µA
IPU Pullup current of FLT, RDY V(RDY) = GND1, V(FLT) = GND1, TA = 25°C,
VCC1 = 5 V, VCC2 – GND2 = 15 V,
GND2 – VEE2 = 8 V
100 µA
VOL Low-level output voltage at FLT, RDY I(FLT) = 5 mA 0.2 V
GATE DRIVER STAGE
V(OUTPD) Active output pulldown voltage I(OUTH/L) = 200 mA, VCC2 = open 2 V
V(OUTH) High-level output voltage I(OUTH) = –20 mA VCC2 – 0.5 V
I(OUTH) = –20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V VCC2 – 0.24
V(OUTL) Low-level output voltage I(OUTL) = 20 mA VEE2 + 50 mV
I(OUTL) = 20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V VEE2 + 13
I(OUTH) High-level output peak current IN+ = high, IN– = low, V(OUTH) = VCC2 – 15 V 1.5 A
IN+ = high, IN– = low, V(OUTH) = VCC2 – 15 V,
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
2.5
I(OUTL) Low-level output peak current IN+ = low, IN– = high, V(OUTL) = VEE2 + 15 V 3.4 A
IN+ = low, IN– = high, V(OUTL) = VEE2 + 15 V,
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
5
I(OLF) Low level output current during fault condition TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 130 mA
ACTIVE MILLER CLAMP
V(CLP) Low-level clamp voltage I(CLP) = 20 mA VEE2 + 0.08 V
I(CLP) = 20 mA, TA = 25°C, VCC1 = 5 V,
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
VEE2 + 0.015
I(CLP) Low-level clamp current V(CLAMP) = VEE2 + 2.5 V 1.6 3.3 A
V(CLAMP) = VEE2 + 2.5 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 2.5
V(CLTH) Clamp threshold voltage 1.6 2.5 V
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 2.1
SHORT CIRCUIT CLAMPING
V(CLP_OUTH) Clamping voltage
(VOUTH – VCC2)
IN+ = high, IN– = low, tCLP = 10 µs,
I(OUTH) = 500 mA
1.1 1.3 V
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTH) = 500 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
V(CLP_OUTL) Clamping voltage
(VOUTL – VCC2)
IN+ = high, IN– = low, tCLP = 10 µs,
I(OUTL) = 500 mA
1.3 1.5 V
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTL) = 500 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
V(CLP_CLAMP) Clamping voltage
(VCLP – VCC2)
IN+ = high, IN– = low, tCLP = 10 µs, I(CLP) = 500 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 1.3 V
Clamping voltage at CLAMP IN+ = High, IN– = Low, I(CLP) = 20 mA 1.1 V
IN+ = High, IN– = Low, I(CLP) = 20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V,
GND2 – VEE2 = 8 V
0.7
V(CLP_OUTL) Clamping voltage at OUTL
(VCLP - VCC2)
IN+ = High, IN– = Low, I(OUTL) = 20 mA 1.1 V
IN+ = High, IN– = Low, I(OUTL) = 20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V,
GND2 – VEE2 = 8 V
0.7
DESAT PROTECTION
I(CHG) Blanking capacitor charge current V(DESAT) – GND2 = 2 V 0.42 0.58 mA
V(DESAT) – GND2 = 2 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 0.5
I(DCHG) Blanking capacitor discharge current V(DESAT) – GND2 = 6 V 9 mA
V(DESAT) – GND2 = 6 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 14
V(DSTH) DESAT threshold voltage with respect to GND2 8.3 9.5 V
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 9
V(DSL) DESAT voltage with respect to GND2, when OUTH/L is driven low 0.4 1 V
IIH for IN–, RST pin is zero as they are pulled high internally.
IIL for IN+ is zero, as it is pulled low internally.

Switching Characteristics

Over recommended operating conditions unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tr Output signal rise time, see Figure 44, Figure 45 and Figure 46 CLOAD = 1 nF 12 35 ns
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 18
tf Output signal fall time, see Figure 44, Figure 45 and Figure 46 CLOAD = 1 nF 12 37 ns
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 20
tPLH, tPHL Propagation delay, see Figure 44, Figure 45 and Figure 46 CLOAD = 1 nF 76 110 ns
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
tsk-p Pulse skew |tPHL – tPLH|, see Figure 44, Figure 45 and Figure 46 CLOAD = 1 nF 20 ns
tsk-pp Part-to-part skew, see Figure 44, Figure 45 and Figure 46 CLOAD = 1 nF 30(1) ns
tGF Glitch filter on IN+, IN–, RST, see Figure 44, Figure 45 and Figure 46 CLOAD = 1 nF 20 40 ns
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 30
tDS (90%) DESAT sense to 90% VOUTH/L delay, see Figure 44, Figure 45 and Figure 46 CLOAD = 10 nF 760 ns
CLOAD = 10 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 553
tDS (10%) DESAT sense to 10% VOUTH/L delay, see Figure 44, Figure 45 and Figure 46 CLOAD = 10 nF 3.5 μs
CLOAD = 10 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 2
tDS (GF) DESAT glitch filter delay CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 330 ns
tDS (FLT) DESAT sense to FLT-low delay, see Figure 46 1.4 μs
tLEB Leading edge blanking time, see Figure 44 and Figure 45 310 480 ns
TA = 25°C, VCC1 = 5 V,
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V
400
tGF(RSTFLT) Glitch filter on RST for resetting FLT 300 800 ns
CI Input capacitance(2) VI = VCC1 / 2 + 0.4 × sin (2πft), f = 1 MHz, VCC1 = 5 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 2 pF
CMTI Common-mode transient immunity, see Figure 47 VCM = 1500 V 50 kV/μs
VCM = 1500 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V 100
Measured at same supply voltage and temperature condition
Measured from input pin to ground.

Insulation Characteristics Curves

ISO5452-Q1 tddb_curve.gif
TA up to 150°C Stress-voltage frequency = 60 Hz
Figure 1. Reinforced Isolation Capacitor Lifetime Projection
ISO5452-Q1 D100_SLLSEQ0.gif Figure 2. Thermal Derating Curve for Safety Limiting Current per VDE
ISO5452-Q1 D101_SLLSEQ0.gif Figure 3. Thermal Derating Curve for Safety Limiting Power per VDE

Typical Characteristics

ISO5452-Q1 D001_SLLSEQ0.gif
Figure 4. Output High Drive Current vs Temperature
ISO5452-Q1 D002_SLLSEQ0.gif
Figure 6. Output Low Drive Current vs Temperature
ISO5452-Q1 D005_SLLSEQ0.gif
Unipolar: VCC2 – VEE2 = VCC2 – GND2
Figure 8. DESAT Threshold Voltage vs Temperature
ISO5452-Q1 D003_SLLSEQ0.gif
Figure 5. Output High Drive Current vs Output Voltage
ISO5452-Q1 D004_SLLSEQ0.gif
Figure 7. Output Low Drive Current vs Output Voltage
ISO5452-Q1 G010_SLLSEQ0.gif
CL = 1 nF RGH = 0 Ω RGL = 0 Ω
VCC2 – VEE2 = VCC2 – GND2 = 20 V
Figure 9. Output Transient Waveform
ISO5452-Q1 G002_SLLSEQ0.gif
CL = 100 nF RGH = 0 Ω RGL = 0 Ω
VCC2 – VEE2 = VCC2 – GND2 = 20 V
Figure 11. Output Transient Waveform
ISO5452-Q1 G004_SLLSEQ0.gif
CL = 10 nF RGH = 10 Ω RGL = 5Ω
VCC2 – VEE2 = VCC2 – GND2 = 20 V
Figure 13. Output Transient Waveform
ISO5452-Q1 Figure12_Out_Tranfer_Wave_FLT_SLLSEQ0.gif
CL = 10 nF RGH = 0 Ω RGL = 0 Ω
VCC2 – VEE2 = VCC2 – GND2 = 15 V DESAT = 220pF
Figure 15. Output Transient Waveform DESAT, RDY and FLT
ISO5452-Q1 G006_SLLSEQ0.gif
CL = 10 nF RGH = 0 Ω RGL = 0 Ω
VCC2 – VEE2 = VCC2 – GND2 = 30 V DESAT = 220pF
Figure 17. Output Transient Waveform DESAT, RDY and FLT
ISO5452-Q1 D006_SLLSEQ0.gif
IN+ = High IN– = Low
Figure 19. ICC1 Supply Current vs Temperature
ISO5452-Q1 D008_SLLSEQ0.gif
Figure 21. ICC1 Supply Current vs Input Frequency
ISO5452-Q1 D009_SLLSEQ0.gif
No CL
Figure 23. ICC2 Supply Current vs Input Frequency
ISO5452-Q1 D012_SLLSEQ0.gif
CL = 1 nF RGH = 0 Ω RGL = 0 Ω
VCC1 = 5 V
Figure 25. Propagation Delay vs Temperature
ISO5452-Q1 D014_SLLSEQ0.gif
RGH = 10 Ω RGL = 5 Ω VCC1 = 5 V
Figure 27. Propagation Delay vs Load Capacitance
ISO5452-Q1 D016_SLLSEQ0.gif
RGH = 0 Ω RGL = 0 Ω VCC1 = 5 V
Figure 29. tf Fall Time v. Load Capacitance
ISO5452-Q1 D018_SLLSEQ0.gif
RGH = 10 Ω RGL = 5 Ω VCC1 = 5 V
Figure 31. tf Fall Time vs Load Capacitance
ISO5452-Q1 D020_SLLSEQ0.gif
CL = 10 nF RGH = 0 Ω RGL = 0 Ω
Figure 33. DESAT Sense to VOUTH/L 10% Delay vs Temperature
ISO5452-Q1 D022_SLLSEQ0.gif
Figure 35. DESAT Sense to Fault Low Delay vs Temperature
ISO5452-Q1 D023_SLLSEQ0.gif
Figure 37. Reset to Fault Delay Across Temperature
ISO5452-Q1 D026_SLLSEQ0.gif
Figure 39. Active Pull Down Voltage vs Temperature
ISO5452-Q1 D027_SLLSEQ2.gif
Figure 41. VOUTH_CLAMP - Short Circuit Clamp Voltage on OUTH Across Temperature
ISO5452-Q1 D030_SLLSEQ0.gif
VCC2 = 15 V DESAT = 6 V
Figure 43. Blanking Capacitor Charging Current vs Temperature
ISO5452-Q1 G001_SLLSEQ0.gif
CL = 10 nF RGH = 0 Ω RGL = 0 Ω
VCC2 – VEE2 = VCC2 – GND2 = 20 V
Figure 10. Output Transient Waveform
ISO5452-Q1 G003_SLLSEQ0.gif
CL = 1 nF RGH = 10 Ω RGL = 5Ω
VCC2 – VEE2 = VCC2 – GND2 = 20 V
Figure 12. Output Transient Waveform
ISO5452-Q1 G005_SLLSEQ0.gif
CL = 100 nF RGH = 10 Ω RGL = 5Ω
VCC2 – VEE2 = VCC2 – GND2 = 20 V
Figure 14. Output Transient Waveform
ISO5452-Q1 G007_SLLSEQ0.gif
CL = 10 nF RGH = 0 Ω RGL = 0 Ω
VCC2 – VEE2 = VCC2 – GND2 = 15 V DESAT = 220pF
Figure 16. Output Transient Waveform DESAT, RDY and FLT
ISO5452-Q1 G008_SLLSEQ0.gif
CL = 10 nF RGH = 0 Ω RGL = 0 Ω
VCC2 – VEE2 = VCC2 – GND2 = 30 V DESAT = 220pF
Figure 18. Output Transient Waveform DESAT, RDY and FLT
ISO5452-Q1 D007_SLLSEQ0.gif
IN+ = Low IN– = Low
Figure 20. ICC1 Supply Current vs Temperature
ISO5452-Q1 D010_SLLSEQ0.gif
Input frequency = 1 kHz
Figure 22. ICC2 Supply Current vs Temperature
ISO5452-Q1 D011_SLLSEQ0.gif
RGH = 10 Ω RGL = 5 Ω, 20 kHz
Figure 24. ICC2 Supply Current vs Load Capacitance
ISO5452-Q1 D013_SLLSEQ0.gif
CL = 1 nF RGH = 0 Ω RGL = 0 Ω
VCC2 = 15 V
Figure 26. Propagation Delay vs Temperature
ISO5452-Q1 D015_SLLSEQ0.gif
RGH = 0 Ω RGL = 0 Ω VCC1 = 5 V
Figure 28. tr Rise Time vs Load Capacitance
ISO5452-Q1 D017_SLLSEQ0.gif
RGH = 10 Ω RGL = 5 Ω VCC1 = 5 V
Figure 30. tr Rise Time vs Load Capacitance
ISO5452-Q1 D019_SLLSEQ0.gif
Figure 32. Leading Edge Blanking Time With Temperature
ISO5452-Q1 D021_SLLSEQ0.gif
CL = 10 nF RGH = 0 Ω RGL = 0 Ω
Figure 34. DESAT Sense to VOUTH/L 90% Delay vs Temperature
ISO5452-Q1 D024_SLLSEQ0.gif
Figure 36. Fault and RDY Low to RDY High Delay vs Temperature
ISO5452-Q1 D025_SLLSEQ0.gif
Figure 38. Miller Clamp Current vs Temperature
ISO5452-Q1 D029_SLLSEQ2.gif
Figure 40. VCLP_CLAMP - Short Circuit Clamp Voltage on Clamp Across Temperature
ISO5452-Q1 D028_SLLSEQ2.gif
Figure 42. VOUTL_CLAMP - Short Circuit Clamp Voltage on OUTL Across Temperature