SLLSFW9 April   2024 ISO7741TA-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics Transformer
    10. 5.10 Electrical Characteristics—5-V Supply
    11. 5.11 Supply Current Characteristics—5-V Supply
    12. 5.12 Electrical Characteristics—3.3-V Supply
    13. 5.13 Supply Current Characteristics—3.3-V Supply
    14. 5.14 Electrical Characteristics—2.5-V Supply 
    15. 5.15 Supply Current Characteristics—2.5-V Supply
    16. 5.16 Switching Characteristics—5-V Supply
    17. 5.17 Switching Characteristics—3.3-V Supply
    18. 5.18 Switching Characteristics—2.5-V Supply
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Electromagnetic Compatibility (EMC) Considerations
      2. 6.3.2 Push-Pull Converter
      3. 6.3.3 Core Magnetization
    4. 6.4 Device Functional Modes
      1. 6.4.1 Device I/O Schematics
      2. 6.4.2 Start-Up Mode
      3. 6.4.3 Operating Mode
      4. 6.4.4 Spread Spectrum Clocking
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Drive Capability
        2. 7.2.2.2 LDO Selection
        3. 7.2.2.3 Diode Selection
        4. 7.2.2.4 Capacitor Selection
        5. 7.2.2.5 Transformer Selection
          1. 7.2.2.5.1 V-t Product Calculation
          2. 7.2.2.5.2 Turns Ratio Estimate
          3. 7.2.2.5.3 Recommended Transformers
      3. 7.2.3 Application Curve
        1. 7.2.3.1 Insulation Lifetime
      4. 7.2.4 System Examples
        1. 7.2.4.1 Higher Output Voltage Designs
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Insulation Lifetime

Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal device and high voltage applied between the two sides; See Figure 7-10 for TDDB test setup. The insulation breakdown data is collected at various high voltages switching at 60Hz over temperature. For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million (ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 50% for lifetime which translates into minimum required insulation lifetime of 30 years at a working voltage that's 20% higher than the specified value.  

Figure 7-11 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based on the TDDB data, the intrinsic capability of the insulation is 1500VRMS with a lifetime of 36 years. Other factors, such as package size, pollution degree, material group, and more can further limit the working voltage of the component. The working voltage of DW-16 package is specified up to 1500VRMS. At the lower working voltages, the corresponding insulation lifetime is much longer than 36 years. DBQ-16 package at 400 VRMS working voltage has a much longer lifetime than

ISO7741TA-Q1 ISO7741TB-Q1 Test Setup for Insulation Lifetime MeasurementFigure 7-10 Test Setup for Insulation Lifetime Measurement
ISO7741TA-Q1 ISO7741TB-Q1 Insulation Lifetime Projection
          DataFigure 7-11 Insulation Lifetime Projection Data