SNOSB23F October   2008  – July 2019 LM5575-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Shutdown and Standby
      2. 7.3.2 Current Limit
      3. 7.3.3 Soft Start
      4. 7.3.4 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 High-Voltage Start-Up Regulator
      2. 7.4.2 Oscillator and Sync Capability
      3. 7.4.3 Error Amplifier and PWM Comparator
      4. 7.4.4 Ramp Generator
      5. 7.4.5 BOOST Pin
      6. 7.4.6 Maximum Duty Cycle and Input Dropout Voltage
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Bias Power Dissipation Reduction
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  External Components
        3. 8.2.2.3  R3 (RT)
        4. 8.2.2.4  L1
        5. 8.2.2.5  C3 (CRAMP)
        6. 8.2.2.6  C9, C10
        7. 8.2.2.7  D1
        8. 8.2.2.8  C1, C2
        9. 8.2.2.9  C8
        10. 8.2.2.10 C7
        11. 8.2.2.11 C4
        12. 8.2.2.12 R5, R6
        13. 8.2.2.13 R1, R2, C12
        14. 8.2.2.14 R7, C11
        15. 8.2.2.15 R4, C5, C6
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Considerations

The junction-to-ambient thermal resistance of the LM5575-Q1 varies with the application. The most significant variables are the area of copper in the PCB, the number of vias under the IC exposed pad, and the amount of forced air cooling provided. As shown in the evaluation board artwork, the area under the LM5575-Q1 (component side) is covered with copper and there are 5 connection vias to the solder-side ground plane. Additional vias under the IC have diminishing value as more vias are added. The integrity of the solder connection from the IC exposed pad to the PCB is critical. Excessive voids will greatly diminish the thermal dissipation capacity. The junction-to-ambient thermal resistance of the LM5575-Q1 mounted in the evaluation board varies from 50°C/W with no airflow to 28°C/W with 900 LFM (linear feet per minute). With a 25°C ambient temperature and no airflow, the predicted junction temperature for the LM5575-Q1 is 25 + (50 × 1.25) = 88°C. If the evaluation board operates at 1.5-A output current, 70-V input voltage, and a high ambient temperature for a prolonged period of time, the thermal shutdown protection within the IC may activate. The IC turns off to allow the junction to cool, followed by restart with the soft-start capacitor reset to zero.