SNOSAR2H September   2008  – April 2016 LMP8601 , LMP8601-Q1 , LMP8602 , LMP8602-Q1 , LMP8603 , LMP8603-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings: LMP860x
    3. 6.3 ESD Ratings: LMP860x-Q1
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics: VS = 3.3 V
    7. 6.7 Electrical Characteristics: VS = 5 V
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Theory of Operation
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Offset Input Pin
      2. 7.3.2 Additional Second-Order Low-Pass Filter
    4. 7.4 Device Functional Modes
      1. 7.4.1 Gain Adjustment
        1. 7.4.1.1 Reducing Gain
        2. 7.4.1.2 Increasing Gain
      2. 7.4.2 Driving Switched Capacitive Loads
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Specifying Performance
    2. 8.2 Typical Applications
      1. 8.2.1 High-Side, Current-Sensing Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Low-Side, Current-Sensing Application
      3. 8.2.3 Battery Current Monitor Application
      4. 8.2.4 Advanced Battery Charger Application
      5. 8.2.5 Current Loop Receiver Application
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Related Links
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage (VS – GND) –0.3 6 V
Continuous input voltage (–IN and +IN) –22 60 V
Transient (400 ms) –25 65 V
Maximum voltage at A1, A2, OFFSET and OUT pins VS + 0.3 GND – 0.3 V
Operating temperature, TA LMP8601EDRQ1 only –40 150 °C
All other devices –40 125
Junction temperature(2) –40 150 °C
Mounting temperature Infrared or convection (20 sec) 235 °C
Wave soldering lead (10 sec) 260
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), RθJA, and the ambient temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) – TA) / RθJA or the number given in Absolute Maximum Ratings, whichever is lower.

6.2 ESD Ratings: LMP860x

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) All pins except 1 and 8 ±2000 V
Pins 1 and 8 ±4000
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings: LMP860x-Q1

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) All pins except 1 and 8 ±2000 V
Pins 1 and 8 ±4000
Charged-device model (CDM), per AEC Q100-011 ±1000
Machine model ±200
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage (VS – GND) 3 5.5 V
OFFSET voltage (Pin 7) 0 VS V
Operating temperature, TA (1) LMP8601EDRQ1 only –40 150 °C
All other devices –40 125
(1) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), RθJA, and the ambient temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) – TA) / RθJA or the number given in Absolute Maximum Ratings, whichever is lower.

6.5 Thermal Information

THERMAL METRIC(1) LMP860x, LMP860x-Q1 LMP8602, LMP8602-Q1, LMP8603, LMP8603-Q1 UNIT
D (SOIC) DGK (VSSOP)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance(2) 113.1 171.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 57.3 64.1 °C/W
RθJB Junction-to-board thermal resistance 53.5 91.1 °C/W
ψJT Junction-to-top characterization parameter 11.1 9.4 °C/W
ψJB Junction-to-board characterization parameter 53.0 89.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), RθJA, and the ambient temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) – TA) / RθJA or the number given in Absolute Maximum Ratings, whichever is lower.

6.6 Electrical Characteristics: VS = 3.3 V

at TA = 25°C, VS = 3.3 V, GND = 0 V, –4 V ≤ VCM ≤ 27 V, RL = ∞, OFFSET (pin 7) is grounded, and 10 nF between VS and GND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
OVERALL PERFORMANCE (FROM -IN (PIN 1) AND +IN (PIN 8) TO OUT (PIN 5) WITH PINS A1 (PIN 3) AND A2 (PIN 4) CONNECTED)
IS Supply current 1 mA
Over full temperature range 0.6 1.3
AV Total gain LMP8601, LMP8601-Q1 19.9 20 20.1 V/V
LMP8602, LMP8602-Q1 49.75 50 50.25
LMP8603, LMP8603-Q1 99.5 100 100.5
Gain Drift(10) Over full temperature range –2.7 ±20 ppm/°C
SR Slew rate(3) VIN = ±0.165 V 0.4 0.7 V/μs
BW Bandwidth 50 60 kHz
VOS Input offset voltage VCM = VS / 2 0.15 ±1 mV
TCVOS Input offset voltage drift(4) Over full temperature range 2 ±10 μV/°C
en Input-referred voltage noise 0.1 Hz - 10 Hz, 6 sigma 16.4 μVP-P
Spectral density, 1 kHz 830 nV/√Hz
PSRR Power-supply rejection ratio 3.0 V ≤ VS ≤ 3.6 V, DC, VCM = VS/2 86 dB
Over full temperature range 70
Midscale offset scaling accuracy LMP8601,
LMP8601-Q1
±0.15% ±0.5%
Input referred ±0.413 mV
LMP8602,
LMP8602-Q1
±0.25% ±1%
Input referred ±0.33 mV
LMP8603,
LMP8603-Q1
±0.45% ±1.5%
Input referred ±0.248 mV
PREAMPLIFIER (FROM INPUT PINS -IN, (PIN 1) AND +IN (PIN 8) TO A1 (PIN 3))
RCM Input impedance common mode –4 V ≤ VCM ≤ 27 V 295
Over full temperature range 250 350
RDM Input impedance differential mode –4 V ≤ VCM ≤ 27 V 590
Over full temperature range 500 700
VOS Input offset voltage VCM = VS / 2 ±0.15 ±1 mV
DC CMRR DC common-mode rejection ratio –2 V ≤ VCM ≤ 24 V 96 dB
Over full temperature range 86
AC CMRR AC common-mode rejection ratio(5) f = 1 kHz 80 94 dB
f = 10 kHz 85
CMVR Input common-mode voltage range for 80-dB CMRR Over full temperature range –4 27 V
K1 Preamplifier gain(10) 9.95 10.0 10.05 V/V
RF-INT Output impedance filter resistor 100
–40°C ≤ TA ≤ 125°C 99 101
–40°C ≤ TA ≤ 150°C, LMP8601EDRQ1 only 97 103
TCRF-INT Output impedance filter resistor drift Over full temperature range ±5 ±50 ppm/°C
A1 VOUT A1 output voltage swing VOL, RL = ∞ 2 mV
Over full temperature range 10
VOH, RL = ∞ 3.25 V
Over full temperature range 3.2
OUTPUT BUFFER (FROM A2 (PIN 4) TO OUT (PIN 5 ))
VOS Input offset voltage 0V ≤ VCM ≤ VS –2 ±0.5 2 mV
Over full temperature range –2.5 2.5
K2 Output buffer gain(10) LMP8601, LMP8601-Q1 1.99 2 2.01 V/V
LMP8602, LMP8602-Q1 4.975 5 5.025
LMP8603, LMP8603-Q1 9.95 10 10.05
IB Input bias current of A2(6), –40 fA
Over full temperature range ±20 nA
A2 VOUT A2 output voltage swing(7) (8) VOL, RL = 100 kΩ LMP8601, LMP8601-Q1, 4 mV
Over full temperature range 20
LMP8602, LMP8602-Q1 10
Over full temperature range 40
LMP8603, LMP8603-Q1 10
Over full temperature range 80
VOH, RL = 100 kΩ 3.29 V
Over full temperature range 3.28
ISC Output short-circuit current(9) Sourcing, VIN = VS, VOUT = GND –25 –38 –60 mA
Sinking, VIN = GND, VOUT = VS 30 46 65
(1) Data sheet min and max limits are specified by test.
(2) Typical values represent the most likely parameter norms at TA = 25°C, and at the Recommended Operation Conditions at the time of product characterization.
(3) Slew rate is the average of the rising and falling slew rates.
(4) Offset voltage drift determined by dividing the change in VOS at temperature extremes into the total temperature change.
(5) AC common-mode signal is a 5-VPP sine-wave (0 V to 5 V) at the given frequency.
(6) Positive current corresponds to current flowing into the device.
(7) For this test input is driven from A1 stage.
(8) For VOL, RL is connected to VS and for VOH, RL is connected to GND.
(9) Short-Circuit test is a momentary test. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
(10) Both the gain of preamplifier K1 and the gain of buffer amplifier K2 are measured individually. The overall gain of both amplifiers (AV) is also measured to assure the gain of all parts is always within the AV limits.

6.7 Electrical Characteristics: VS = 5 V

at TA = 25°C, VS = 5 V, GND = 0 V, –22 V ≤ VCM ≤ 60 V, RL = ∞, OFFSET (pin 7) is grounded, and 10 nF between VS and GND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
OVERALL PERFORMANCE (FROM -IN (PIN 1) AND +IN (PIN 8) TO OUT (PIN 5) WITH PINS A1 (PIN 3) AND A2 (PIN 4) CONNECTED)
IS Supply current 1.1 mA
Over full temperature range 0.7 1.5
AV Total gain(10) LMP8601, LMP8601-Q1 19.9 20 20.1 V/V
LMP8602, LMP8602-Q1 49.75 50 50.25
LMP8603, LMP8603-Q1 99.5 100 100.5
Gain drift –40°C ≤ TA ≤ 125°C –2.8 ±20 ppm/°C
SR Slew rate(3) VIN = ±0.25 V 0.6 0.83 V/μs
BW Bandwidth 50 60 kHz
VOS Input offset voltage 0.15 ±1 mV
TCVOS Input offset voltage drift(4) –40°C ≤ TA ≤ 125°C 2 ±10 μV/°C
eN Input-referred voltage noise 0.1 Hz - 10 Hz, 6 sigma 17.5 μVP-P
Spectral density, 1 kHz 890 nV/√Hz
PSRR Power-supply rejection ratio 4.5 V ≤ VS ≤ 5.5 V, DC 90 dB
Over full temperature range 70
Midscale offset scaling accuracy LMP8601,
LMP8601-Q1
±0.15% ±0.5%
Input-referred ±0.625 mV
LMP8602,
LMP8602-Q1
±0.25% ±1%
Input-referred ±0.50 mV
LMP8603,
LMP8603-Q1
±0.45% ±1.5%
Input-referred ±0.375 mV
PREAMPLIFIER (FROM INPUT PINS -IN (PIN 1) AND +IN (PIN 8) TO A1 (PIN 3))
RCM Input impedance, common mode 0 V ≤ VCM ≤ 60 V 295
Over full temperature range 250 350
–20 V ≤ VCM ≤ 0 V 193
Over full temperature range 165 250
RDM Input impedance, differential mode 0 V ≤ VCM ≤ 60 V 590
Over full temperature range 500 700
–20 V ≤ VCM ≤ 0 V 386
Over full temperature range 300 500
VOS Input offset voltage VCM = VS / 2 ±0.15 ±1 mV
DC CMRR DC common-mode rejection ratio –20 V ≤ VCM ≤ 60 V 105 dB
Over full temperature range 90
AC CMRR AC common-mode rejection ratio(5) f = 1 kHz 80 96 dB
f = 10 kHz 83
CMVR Input common-mode voltage range for 80-dB CMRR Over full temperature range –22 60 V
K1 Preamplifier gain(10) 9.95 10 10.05 V/V
RF-INT Output impedance filter resistor 100
–40°C ≤ TA ≤ 125°C, 99 101
–40°C ≤ TA ≤ 150°C, LMP8601EDRQ1 only 97 103
TCRF-INT Output impedance filter resistor drift ±5 ±50 ppm/°C
A1 VOUT A1 output voltage swing VOL, RL = ∞ 2 mV
Over full temperature range 10
VOH, RL = ∞ 4.985 V
Over full temperature range 4.95
OUTPUT BUFFER (FROM A2 (PIN 4) TO OUT (PIN 5))
VOS Input offset voltage 0V ≤ VCM ≤ VS –2 ±0.5 2 mV
Over full temperature range –2.5 2.5
K2 Output buffer gain(10) LMP8601, LMP8601-Q1 1.99 2 2.01 V/V
LMP8602, LMP8602-Q1 4.975 5 5.025
LMP8603, LMP8603-Q1 9.95 10 10.05
IB Input bias current of A2(6) –40 fA
Over full temperature range ±20 nA
A2 VOUT A2 output voltage swing(7) (8) VOL, RL = ∞ LMP8601, LMP8601-Q1, 4 mV
Over full temperature range 20
LMP8602, LMP8602-Q1 10
Over full temperature range 40
LMP8602, LMP8603-Q1 10
Over full temperature range 80
VOH, RL = ∞ 4.99 V
Over full temperature range 4.98
ISC Output short-circuit current(9) Sourcing, VIN = VS, VOUT = GND –25 –42 –60 mA
Sinking, VIN = GND, VOUT = VS 30 48 65

6.8 Typical Characteristics

at TA = 25°C, VS = 5 V, GND = 0 V, –22 ≤ VCM ≤ 60 V, RL = ∞, OFFSET (pin 7) connected to VS, and 10 nF between VS and GND (unless otherwise noted)
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157124.gif
Figure 1. VOS vs VCM at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157141.gif Figure 3. Input Bias Current Over Temperature (+IN and –IN pins) at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157127.gif Figure 5. Input Bias Current Over Temperature (A2 pin) at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157110.gif Figure 7. Input-Referred Voltage Noise vs Frequency
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157111.gif Figure 9. Gain vs Frequency at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157128.gif Figure 11. CMRR vs Frequency at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157118.gif Figure 13. Step Response at VS = 3.3 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157120.gif Figure 15. Settling Time (Falling Edge) at VS = 3.3 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157122.gif Figure 17. Settling Time (Rising Edge) at VS = 3.3 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083418.gif Figure 19. Step Response at VS = 3.3 V, RL = 10 kΩ
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083420.gif Figure 21. Settling Time (Falling Edge) at VS = 3.3 V
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083422.gif Figure 23. Settling Time (Rising Edge) at VS = 3.3 V
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083443.gif Figure 25. Step Response at VS = 3.3 V, RL = 10 kΩ
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083445.gif Figure 27. Settling Time (Falling Edge) at VS = 3.3 V
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083447.gif Figure 29. Settling Time (Rising Edge) at VS = 3.3 V
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157113.gif Figure 31. Positive Swing vs RLOAD at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157115.gif Figure 33. Positive Swing vs RLOAD VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157134.gif Figure 35. VOS Distribution at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157136.gif Figure 37. TCVOS Distribution
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083437.gif Figure 39. Gain Drift Distribution, 5000 Parts
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157138.gif Figure 41. Gain Error Distribution at VS = 3.3 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083438.gif Figure 43. Gain Error Distribution at VS = 3.3 V, 5000 Parts
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083484.gif Figure 45. Gain Error Distribution at VS = 3.3 V, 5000 Parts
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157132.gif Figure 47. CMRR Distribution at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 C001_SNOSAR2.png Figure 49. Output Voltage vs VIN
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 C002_SNOSAR2.png Figure 51. Output Voltage vs VIN
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157125.gif
Figure 2. VOS vs VCM at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157142.gif Figure 4. Input Bias Current Over Temperature (+IN and –IN pins) at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157126.gif Figure 6. Input Bias Current Over Temperature (A2 pin) at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157117.gif Figure 8. PSRR vs Frequency
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157112.gif Figure 10. Gain vs Frequency at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157129.gif Figure 12. CMRR vs Frequency at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157119.gif Figure 14. Step Response at VS = 5 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157121.gif Figure 16. Settling Time (Falling Edge) at VS = 5 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157123.gif Figure 18. Settling Time (Rising Edge) at VS = 5 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083419.gif Figure 20. Step Response at VS = 5 V, RL = 10 kΩ
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083421.gif Figure 22. Settling Time (Falling Edge) at VS = 5 V
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083423.gif Figure 24. Settling Time (Rising Edge) at VS = 5 V
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083444.gif Figure 26. Step Response at VS = 5 V, RL = 10 kΩ
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083446.gif Figure 28. Settling Time (Falling Edge) at VS = 5 V
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083448.gif Figure 30. Settling Time (Rising Edge) at VS = 5 V
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157114.gif Figure 32. Negative Swing vs RLOAD at VS = 3.3 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157116.gif Figure 34. Negative Swing vs RLOAD at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157135.gif Figure 36. VOS Distribution at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157137.gif Figure 38. Gain Drift Distribution, 1300 Parts
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083483.gif Figure 40. Gain Drift Distribution, 5000 Parts
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157139.gif Figure 42. Gain Error Distribution at VS = 5 V
LMP8601 and LMP8601-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083439.gif Figure 44. Gain Error Distribution at VS = 5 V, 5000 Parts
LMP8602 and LMP8602-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 30083485.gif Figure 46. Gain Error Distribution at VS = 5 V
LMP8603 and LMP8603-Q1
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 20157133.gif Figure 48. CMRR Distribution at VS = 5 V
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 C003_SNOSAR2.png Figure 50. Output Voltage vs VIN (Enlarged Close to 0 V)
LMP8601 LMP8601-Q1 LMP8602 LMP8602-Q1 LMP8603 LMP8603-Q1 C004_SNOSAR2.png Figure 52. Output Voltage vs VIN (Enlarged Close to 0 V)