SNOS405B November   1999  – May 2017 MAX660

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 MAX660 Test Circuit
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Voltage Inverter
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Capacitor Selection
          2. 9.2.1.2.2 Paralleling Devices
          3. 9.2.1.2.3 Cascading Devices
          4. 9.2.1.2.4 Regulating Output Voltage
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Positive Voltage Doubler
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
    3. 9.3 Split V+ in Half
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

D Package
8-Pin SOIC
Top View
MAX660 10089805.png

Pin Functions

PIN I/O DESCRIPTION
NAME NO. VOLTAGE INVERTER VOLTAGE DOUBLER
CAP+ 2 Power Connect this pin to the positive terminal of charge-pump capacitor. Same as inverter
CAP– 4 Power Connect this pin to the negative terminal of charge-pump capacitor. Same as inverter
FC 1 Input Frequency control for internal oscillator:
FC = open, ƒOSC = 10 kHz (typical);
FC = V+, ƒOSC = 80 kHz (typical);
FC has no effect when OSC pin is driven externally
Same as inverter
GND 3 Ground Power supply ground input. Power supply positive voltage input
LV 6 Input Low-voltage operation input. Tie LV to GND when input voltage is less than 3.5 V. Above 3.5 V, LV can be connected to GND or left open. When driving OSC with an external clock, LV must be connected to GND. LV must be tied to OUT.
OSC 7 Input Oscillator control input. OSC is connected to an internal 15-pF capacitor. An external capacitor can be connected to slow the oscillator. Also, an external clock can be used to drive OSC. Same as inverter except that OSC cannot be driven by an external clock
OUT 5 Power Negative voltage output Positive supply ground input
V+ 8 Power Power supply positive voltage input Positive voltage output